a SpringerOpen Journal

Quantum codes from constacyclic codes over S_{k}

Bo Kong ${ }^{1 *}$ and Xiying Zheng ${ }^{2 *}$

"Correspondence:
kongbo666@163.com; zxyccnu@163.com
${ }^{1}$ School of Statistics and Mathematics, Henan Finance University, Zhengzhou, 450046, Henan, China
${ }^{2}$ Faculty of Engineering, Huanghe Science and Technology College,
Zhengzhou, 450063, Henan, China

Abstract

Let $S_{k}=\mathbb{F}_{q}\left[u_{1}, u_{2}, \ldots, u_{k}\right] /\left\langle u_{i}^{3}=u_{i}, u_{i} u_{j}=u_{j} u_{i}=0\right\rangle$, where $1 \leq i, j \leq k, q=p^{m}, p$ is an odd prime. First, we define two new Gray maps ϕ_{k} and φ_{k}, and study their Gray images. Further, we determine the structure of constacyclic codes and their dual codes, and give a necessary and sufficient conditions of constacyclic codes to contain their duals. Finally, we obtain some new quantum codes over \mathbb{F}_{q} by using CSS construction, and compare the constructed codes better than the existing literature.

MSC: 94B05; 94B15; 94B60
Keywords: Constacyclic codes; Quantum codes; Gray map; Dual-containing codes; CSS construction

1 Introduction

In recent years, quantum theory and technology has become a popular research in the field of information, the research progress of some mathematical problems plays a key role in the study of quantum error correction problems. Calderbank et al. [1] gave a way to construct quantum error correcting codes from classical error correcting codes, constructing quantum error correcting codes is a systematic and effective mathematical method by using constacyclic codes. There are a lot of works about constacyclic codes over finite fields and finite rings [2-10] and many good quantum codes constructed by using cyclic codes over finite rings [11-14]. Currently, some authors have obtained quantum codes from constacyclic codes over finite non-chain ring. Wang et al. [15] studied quantum codes over \mathbb{F}_{q} from Hermitian dual-containing constacyclic codes over $\mathbb{F}_{q^{2}}+v \mathbb{F}_{q^{2}}$. Prakash et al. [16] obtained quantum codes from skew constacyclic codes over a class of non-chain rings $R_{e, q}=\mathbb{F}_{q}[u] /\left\langle u^{e}-1\right\rangle$ by applying the CSS construction. Ashraf et al. [17] constructed quantum codes from $\mathbb{F}_{q} R_{1} R_{2}$-cyclic codes and introduced a Gray map to find some new and better quantum codes over \mathbb{F}_{p}. Dertli and Cengellenmis [18] studied quantum codes from constacyclic codes over the finite ring $u \mathbb{F}_{p}+v \mathbb{F}_{p}+u v \mathbb{F}_{p}$, Islam and Prakash [19] constructed quantum codes from $\lambda=\left(\lambda_{1}+u \lambda_{2}+v \lambda_{3}\right)$-constacyclic codes over a class of finite commutative non-chain rings $\mathbb{F}_{q}[u, v] /\left\langle u^{2}-\gamma u, v^{2}-\delta v, u v=v u=0\right\rangle$.

[^0]Due to the strong motivation discussed above, we construct some new quantum codes by studying the structure of constacyclic codes over a finite non-chain ring. The major two contributions of this paper are as follows.

1. In general, it is difficult to determine the structure of constacyclic codes over a finite non-chain ring, we study the structure of λ-constacyclic codes and their dual codes over the ring S_{k}, and give a necessary and sufficient conditions of dual-containing constacyclic codes.
2. As an application, we obtain some new quantum codes from constacyclic codes over S_{k} by using CSS construction and compare these codes better than the existing codes that appeared in some recent references

2 Preliminaries

Let $S_{k}=\mathbb{F}_{q}\left[u_{1}, u_{2}, \ldots, u_{k}\right] /\left\langle u_{i}^{3}=u_{i}, u_{i} u_{j}=u_{j} u_{i}=0\right\rangle$, where $q=p^{m}$ and p is an odd prime. The ring S_{k} is a commutative and Frobenius ring with identity but not local, and the cardinality of S_{k} is $q^{(2 k+1)}$.
Let $e_{1}=\frac{u_{1}^{2}+u_{1}}{2}, e_{2}=\frac{u_{1}^{2}-u_{1}}{2}, \ldots, e_{2 k-1}=\frac{u_{k}^{2}+u_{k}}{2}, e_{2 k}=\frac{u_{k}^{2}-u_{k}}{2}, e_{2 k+1}=1-u_{1}^{2}-u_{2}^{2}-\cdots-u_{k}^{2}$, where $e_{i} e_{j}=0$, when $i \neq j$, and $e_{i}^{2}=e_{i}$, when $i=1,2, \ldots, 2 k+1$, and $1=e_{1}+e_{2}+\cdots+e_{2 k+1}$. By the Chinese Remainder Theorem we can get that

$$
S_{k}=e_{1} S_{k} \oplus e_{2} S_{k} \oplus \cdots \oplus e_{2 k+1} S_{k} .
$$

$\forall r \in S_{k}, r$ can be expressed uniquely as $r=r_{1} e_{1}+r_{2} e_{2}+\cdots+r_{2 k+1} e_{2 k+1}$, where $r_{i} \in \mathbb{F}_{q}$, $i=1,2, \ldots, 2 k+1$.

By the definition above, it can be easily seen that S_{k} is a principal ideal ring but not a chain ring, which has $2 k+1$ maximal ideals. For any element $\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right)$ of $S_{k},\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right)$ is a unit if and only if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2 k+1}$ are units over \mathbb{F}_{q}.
If C is a code of length n over S_{k}, then C is a subset of S_{k}^{n}. C is a linear code of length n over S_{k} if and only if C is an S_{k}-submodule of S_{k}^{n}.
For any unit $\lambda \in S_{k}$, a code C is called a λ-constacyclic code of length n over S_{k} if and only if C is invariant under constacyclic shift operator $\sigma_{\lambda}: S_{k}^{n} \rightarrow S_{k}^{n}$ by

$$
\sigma_{\lambda}\left(c_{0}, c_{1}, \ldots, c_{n-1}\right)=\left(\lambda c_{n-1}, c_{0}, \ldots, c_{n-2}\right) .
$$

When $\lambda=1, C$ is a cyclic code, when $\lambda=-1, C$ is a negacyclic code.
If C is a linear code of length n over S_{k}, the dual code of C is defined as

$$
C^{\perp}=\{x \mid \forall y \in C, x \cdot y=0\},
$$

where $x \cdot y=\sum_{i=0}^{n-1} x_{i} y_{i}, x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in S_{k}^{n}, y=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right) \in S_{k}^{n}$.

3 Gray maps

Let A be an $n \times n$ matrix, such that $A A^{T}=\lambda E_{n}$, where A^{T} denotes the transpose of the matrix A, E_{n} is the identity matrix of order $n, \lambda \in \mathbb{F}_{q}$ and $\lambda \neq 0$.

Definition 1 We define a Gray map $\phi_{k}: S_{k} \rightarrow \mathbb{F}_{q}^{2 k+1}$ by $r \mapsto\left(r_{1}, r_{2}, \ldots, r_{2 k+1}\right)$, where $r=$ $r_{1} e_{1}+r_{2} e_{2}+\cdots+r_{2 k+1} e_{2 k+1}$.

And ϕ_{k} can be expanded as:

$$
\begin{aligned}
& \phi_{k}: S_{k}^{n} \rightarrow \mathbb{F}_{q}^{(2 k+1) n} \\
& \quad\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \mapsto\left(a^{(1)} A, a^{(2)} A, \ldots, a^{(2 k+1)} A\right)
\end{aligned}
$$

where

$$
a_{j}=a_{1, j} e_{1}+a_{2, j} e_{2}+\cdots+a_{2 k+1, j} e_{2 k+1} \in S_{k}, \quad j=0,1,2, \ldots, n-1,
$$

and

$$
a^{(i)}=\left(a_{i, 0}, a_{i, 1}, \ldots, a_{i, n-1}\right), \quad i=1,2, \ldots, 2 k+1 .
$$

When the Gray map is defined as ϕ_{k}, the Gray weight of $a \in S_{k}$ is defined as $w_{G}(a)=$ $w_{H}\left(\phi_{k}(a)\right)$, where $w_{H}\left(\phi_{k}(a)\right)$ denotes the Hamming weight of $\phi_{k}(a)$.

The Gray weight of a vector $r=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in S_{k}^{n}$ is defined as $w_{G}(r)=\sum_{i=1}^{n} w_{G}\left(x_{i}\right)$, the Gray distance of $x, y \in S_{k}^{n}$ is given by $d_{G}(x, y)=w_{G}(x-y)$, and the minimum Gray distance of C is defined as

$$
d_{G}(C)=\min \left\{d_{G}(x-y), x, y \in C, x \neq y\right\} .
$$

Lemma $1 \phi_{k}$ is both a bijection and a distance preserving linear map from S_{k}^{n} to $\mathbb{F}_{q}^{(2 k+1) n}$.

Proof Let $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in S_{k}^{n}, b=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right) \in S_{k}^{n}, l \in \mathbb{F}_{q}$, where $a_{j}=a_{1, j} e_{1}+$ $a_{2, j} e_{2}+\cdots+a_{2 k+1, j} e_{2 k+1} \in S_{k}, b_{j}=b_{1, j} e_{1}+b_{2, j} e_{2}+\cdots+b_{2 k+1, j} e_{2 k+1} \in S_{k}, j=0,1,2, \ldots, n-1$, $a^{(i)}=\left(a_{i, 0}, a_{i, 1}, \ldots, a_{i, n-1}\right), b^{(i)}=\left(b_{i, 0}, b_{i, 1}, \ldots, b_{i, n-1}\right), i=1,2, \ldots, 2 k+1$.
Then

$$
\begin{aligned}
\phi_{k}(a+b) & =\phi_{k}\left(a_{0}+b_{0}, a_{1}+b_{1}, \ldots, a_{n-1}+b_{n-1}\right) \\
& =\left(\left(a^{(1)}+b^{(1)}\right) A,\left(a^{(2)}+b^{(2)}\right) A, \ldots,\left(a^{(2 k+1)}+b^{(2 k+1)}\right) A\right) \\
& =\left(a^{(1)} A, a^{(2)} A, \ldots, a^{(2 k+1)} A\right)+\left(b^{(1)} A, b^{(2)} A, \ldots, b^{(2 k+1)} A\right) \\
& =\phi_{k}(a)+\phi_{k}(b), \\
\phi_{k}(l a)= & \phi_{k}\left(l a_{0}, l a_{1}, \ldots, l a_{n-1}\right) \\
= & \left(l a_{0} A, l a_{1} A, \ldots, l a_{n-1} A\right) \\
= & l\left(a^{(1)} A, a^{(2)} A, \ldots, a^{(2 k+1)} A\right) \\
= & l \phi_{k}(a) .
\end{aligned}
$$

So ϕ_{k} is linear.
$\forall a, b \in S_{k}^{n}$, suppose $\phi_{k}(a)=\phi_{k}(b)$, then

$$
\left(a^{(1)} A, a^{(2)} A, \ldots, a^{(2 k+1)} A\right)=\left(b^{(1)} A, b^{(2)} A, \ldots, b^{(2 k+1)} A\right)
$$

Because A is an invertible matrix, we have

$$
\left(a^{(1)}, a^{(2)}, \ldots, a^{(2 k+1)}\right)=\left(b^{(1)}, b^{(2)}, \ldots, b^{(2 k+1)}\right)
$$

so $a=b, \phi_{k}$ is an injection.
As

$$
\left|S_{k}^{n}\right|=\left|\mathbb{F}_{q}^{(2 k+1) n}\right|=q^{(2 k+1) n}
$$

so ϕ_{k} is a bijection.
$\forall a, b \in S_{k}^{n}$, then

$$
\begin{aligned}
& a-b=\left(a_{0}-b_{0}, a_{1}-b_{1}, \ldots, a_{n-1}-b_{n-1}\right), \\
& \phi_{k}(a-b)=\left(\left(a^{(1)}-b^{(1)}\right) A,\left(a^{(2)}-b^{(2)}\right) A, \ldots,\left(a^{(2 k+1)}-b^{(2 k+1)}\right) A\right)=\phi_{k}(a)-\phi_{k}(b), \\
& d_{G}(a, b)=w_{G}(a-b)=w_{H}\left(\phi_{k}(a-b)\right)=w_{H}\left(\phi_{k}(a)-\phi_{k}(b)\right)=d_{H}\left(\phi_{k}(a), \phi_{k}(b)\right) .
\end{aligned}
$$

So ϕ_{k} is a distance preserving map from S_{k}^{n} to $\mathbb{F}_{q}^{(2 k+1) n}$.

By Lemma 1 and the definition of ϕ_{k}, we can have the following lemma.

Lemma 2 Let C be a linear code of length n over S_{k}^{n} and the minimal Gray distance of C is d, then $\phi_{k}(C)$ is a $[(2 k+1) n, l, d]$ linear code over \mathbb{F}_{q}, where $l=\log _{q}|C|$.

Let B be a $(2 k+1) \times(2 k+1)$ matrix, such that $B B^{T}=\lambda E_{2 k+1}$, where B^{T} denotes the transpose of the matrix $B, E_{2 k+1}$ is the identity matrix of order $2 k+1, \lambda \in \mathbb{F}_{q}$ and $\lambda \neq 0$. $\forall r=r_{1} e_{1}+r_{2} e_{2}+\cdots+r_{2 k+1} e_{2 k+1} \in S_{k}$, the vector form of r is written as $r=\left(r_{1}, r_{2}, \ldots, r_{2 k+1}\right)$.

Definition 2 We define a Gray map $\varphi_{k}: S_{k} \rightarrow \mathbb{F}_{q}^{2 k+1}$ by $r \mapsto r B$.

And φ_{k} can be expanded as

$$
\begin{aligned}
& \varphi_{k}: S_{k}^{n} \rightarrow \mathbb{F}_{q}^{(2 k+1) n} \\
& \quad\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \mapsto\left(a_{0} B, a_{1} B, \ldots, a_{n-1} B\right),
\end{aligned}
$$

where $a_{i}=a_{1, i} e_{1}+a_{2, i} e_{2}+\cdots+a_{2 k+1, i} e_{2 k+1} \in S_{k}, i=0,1,2, \ldots, n-1$.
When the Gray map is defined as φ_{k}, the Gray weight of $a \in S_{k}$ is defined as $w_{G}(a)=$ $w_{H}\left(\varphi_{k}(a)\right)$, where $w_{H}\left(\varphi_{k}(a)\right)$ denotes the Hamming weight of $\varphi_{k}(a)$.
The Gray weight of a vector $r=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in S_{k}^{n}$ is defined as $w_{G}(r)=\sum_{i=1}^{n} w_{G}\left(x_{i}\right)$, the Gray distance of $x, y \in S_{k}^{n}$ is given by $d_{G}(x, y)=w_{G}(x-y)$, and the minimum Gray distance of C is defined as

$$
d_{G}(C)=\min \left\{d_{G}(x-y), x, y \in C, x \neq y\right\} .
$$

Lemma $3 \varphi_{k}$ is both a bijection and a distance preserving linear map from S_{k}^{n} to $\mathbb{F}_{q}^{(2 k+1) n}$.

Proof Let $a, b \in S_{k}^{n}$, where $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right), b=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right), l \in \mathbb{F}_{q}$. Then

$$
\begin{aligned}
\varphi_{k}(a+b) & =\varphi_{k}\left(a_{0}+b_{0}, a_{1}+b_{1}, \ldots, a_{n-1}+b_{n-1}\right) \\
& =\left(\left(a_{0}+b_{0}\right) B,\left(a_{1}+b_{1}\right) B, \ldots,\left(a_{n-1}+b_{n-1}\right) B\right) \\
& =\left(a_{0} B, a_{1} B, \ldots, a_{n-1} B\right)+\left(b_{0} B, b_{1} B, \ldots, b_{n-1} B\right) \\
& =\varphi_{k}(a)+\varphi_{k}(b), \\
\varphi_{k}(l a)= & \phi_{k}\left(l a_{0}, l a_{1}, \ldots, l a_{n-1}\right)=\left(l a_{0} B, l a_{1} B, \ldots, l a_{n-1} B\right) \\
& =l\left(a_{0} B, a_{1} B, \ldots, a_{n-1} B\right) \\
& =l \phi_{k}(a) .
\end{aligned}
$$

So φ_{k} is linear.
$\forall a, b \in S_{k}^{n}$, suppose $\varphi_{k}(a)=\varphi_{k}(b)$, then

$$
\left(a_{0} B, a_{1} B, \ldots, a_{n-1} B\right)=\left(b_{0} B, b_{1} B, \ldots, b_{n-1} B\right) .
$$

Because B is an invertible matrix, we have $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)=b, \varphi_{k}$ is an injection.
As

$$
\left|S_{k}^{n}\right|=\left|\mathbb{F}_{q}^{(2 k+1) n}\right|=q^{(2 k+1) n}
$$

so φ_{k} is a bijection.
$\forall a, b \in S_{k}^{n}$, then

$$
\begin{aligned}
& a-b=\left(a_{0}-b_{0}, a_{1}-b_{1}, \ldots, a_{n-1}-b_{n-1}\right), \\
& \varphi_{k}(a-b)=\left(\left(a_{0}-b_{0}\right) B,\left(a_{1}-b_{1}\right) B, \ldots,\left(a_{n-1}-b_{n-1}\right) B\right)=\varphi_{k}(a)-\varphi_{k}(b), \\
& d_{G}(a, b)=w_{G}(a-b)=w_{H}\left(\varphi_{k}(a-b)\right)=w_{H}\left(\varphi_{k}(a)-\varphi_{k}(b)\right)=d_{H}\left(\varphi_{k}(a), \varphi_{k}(b)\right) .
\end{aligned}
$$

So φ_{k} is a distance preserving map from S_{k}^{n} to $\mathbb{F}_{q}^{(2 k+1) n}$.

By Lemma 3 and the definition of φ_{k}, we can have the following lemma.

Lemma 4 Let C be a linear code of length n over S_{k}^{n} and the minimal Gray distance of C is d, then $\varphi_{k}(C)$ is a $[(2 k+1) n, l, d]$ linear code over \mathbb{F}_{q}, where $l=\log _{q}|C|$.

4 Constacyclic codes over S_{k}

Let C be a linear code of length n over S_{k} and define

$$
C_{j}=\left\{x_{j} \in \mathbb{F}_{q}^{n} \mid \sum_{i=1}^{2 k+1} x_{i} e_{i} \in C, x_{i} \in \mathbb{F}_{q}^{n}\right\}, \quad j=1,2, \ldots, 2 k+1,
$$

then, $C_{1}, C_{2}, \ldots, C_{2 k+1}$ are linear codes of length n over \mathbb{F}_{q}.

Moreover, the linear code C of length n over S_{k} can be represented as

$$
C=\bigoplus_{j=1}^{2 k+1} e_{j} C_{j} .
$$

Let G_{j} be the Generator matrices of C_{j}, then the Generator matrix of C is

$$
G=\left[\begin{array}{c}
e_{1} G_{1} \\
e_{2} G_{2} \\
\cdots \\
e_{2 k+1} G_{2 k+1}
\end{array}\right]
$$

Definition 3 We define a quasi-cyclic shift on $\left(\mathbb{F}_{q}^{n}\right)^{2 k+1}$,

$$
\begin{aligned}
\psi_{2 k+1} & \left(a_{1,0}, a_{1,1} \cdots, a_{1, n-1}, a_{2,0}, a_{2,1} \cdots, a_{2, n-1},\right. \\
& \left.\cdots, a_{2 k+1,0}, a_{2 k+1,1} \cdots, a_{2 k+1, n-1}\right) \\
= & \left(\sigma\left(a_{1,0}, a_{1,1} \cdots, a_{1, n-1}\right), \sigma\left(a_{2,0}, a_{2,1} \cdots, a_{2, n-1}\right),\right. \\
& \left.\cdots, \sigma\left(a_{2 k+1,0}, a_{2 k+1,1} \cdots, a_{2 k+1, n-1}\right)\right)
\end{aligned}
$$

Proposition 1 Let σ be the cyclic shift operator on S_{k}^{n}, let $\psi_{2 k+1}$ be the quasi-cyclic shift on $\left(\mathbb{F}_{q}^{n}\right)^{2 k+1}$ defined as above. Then $\phi_{k} \sigma=\psi_{2 k+1} \phi_{k}$.

Proof Let $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in S_{k}^{n}$, where $a_{j}=a_{1, j} e_{1}+a_{2, j} e_{2}+\cdots+a_{2 k+1, j} e_{2 k+1} \in S_{k}, j=$ $0,1,2, \ldots, n-1, a^{(i)}=\left(a_{i, 0}, a_{i, 1}, \ldots, a_{i, n-1}\right), i=1,2, \ldots, 2 k+1$.

$$
\begin{aligned}
& \phi_{k}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=\left(a^{(1)} A, a^{(2)} A, \ldots, a^{(2 k+1)} A\right), \\
& \sigma\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=\left(a_{n-1}, a_{0}, \ldots, a_{n-2}\right) .
\end{aligned}
$$

If we apply ϕ_{k}, we can have

$$
\begin{aligned}
\phi_{k}\left(\sigma\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\right)= & \phi_{k}\left(a_{n-1}, a_{0}, \ldots, a_{n-2}\right) \\
= & \left(\left(a_{1, n-1}, a_{1,0}, \ldots, a_{1, n-2}\right) A,\left(a_{2, n-1}, a_{2,0}, \ldots, a_{2, n-2}\right) A,\right. \\
& \left.\cdots,\left(a_{2 k+1, n-1}, a_{2 k+1,0}, \ldots, a_{2 k+1, n-2}\right) A\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\psi_{2 k+1}\left(\phi_{k}\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\right)= & \psi_{2 k+1}\left(a^{(1)} A, a^{(2)} A, \ldots, a^{(2 k+1)} A\right) \\
= & \left(\sigma\left(a^{(1)} A\right), \sigma\left(a^{(2)} A\right), \ldots, \sigma\left(a^{(2 k+1)} A\right)\right) \\
= & \left(\left(a_{1, n-1}, a_{1,0}, \ldots, a_{1, n-2}\right) A,\right. \\
& \left(a_{2, n-1}, a_{2,0}, \ldots, a_{2, n-2}\right) A, \\
& \left.\ldots,\left(a_{2 k+1, n-1}, a_{2 k+1,0}, \ldots, a_{2 k+1, n-2}\right) A\right) \\
= & \phi_{k}\left(\sigma\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\right) .
\end{aligned}
$$

Thus $\phi_{k} \sigma=\psi_{2 k+1} \phi_{k}$.

Proposition 2 Let σ and $\psi_{2 k+1}$ be defined as above, then a linear code C of length n over S_{k} is a cyclic code if and only if $\phi_{k}(C)$ is a quasi cyclic code of index $2 k+1$ of length $(2 k+1) n$ over \mathbb{F}_{q}.

Proof If C is a cyclic code of length n over S_{k}. Then $\sigma(C)=C$. We can have $\phi_{k}(\sigma(C))=$ $\phi_{k}(C)$.

By Proposition 1,

$$
\phi_{k}(\sigma(C))=\psi_{2 k+1}\left(\phi_{k}(C)\right)=\phi_{k}(C) .
$$

So, $\phi_{k}(C)$ is a quasi-cyclic code of index $2 k+1$ of length $(2 k+1) n$ over \mathbb{F}_{q}.
Conversely, suppose $\phi_{k}(C)$ is a quasi-cyclic code of index $2 k+1$ of length $(2 k+1) n$ over \mathbb{F}_{q}, then $\psi_{2 k+1}\left(\phi_{k}(C)\right)=\phi_{k}(C)$.

By Proposition 1, we have $\psi_{2 k+1}\left(\phi_{k}(C)\right)=\phi_{k}(\sigma(C))=\phi_{k}(C)$.
Since ϕ_{k} is a bijective linear map, so $\sigma(C)=C$.

Theorem 1 Let $\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}$ be a unit of S_{k}. Let $C=\bigoplus_{j=1}^{2 k+1} e_{j} C_{j}$ be a linear code of length n over S_{k}, then C is a $\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right)$-constacyclic code over S_{k} if and only if C_{i} is a λ_{i}-constacyclic code over \mathbb{F}_{q}, where $i=1,2, \ldots, 2 k+1$.

Proof $\forall c_{i}=\left(c_{i, 0}, c_{i, 1}, \ldots, c_{i, n-1}\right) \in C_{i}$, where $i=1,2, \ldots, 2 k+1$.

$$
c=e_{1} c_{1}+e_{2} c_{2}+\cdots+e_{2 k+1} c_{2 k+1}=\left(\sum_{i=1}^{2 k+1} e_{i} c_{i, 0}, \sum_{i=1}^{2 k+1} e_{i} c_{i, 1}, \ldots, \sum_{i=1}^{2 k+1} e_{i} c_{i, n-1}\right) \in C .
$$

$\forall \lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1} \in S_{k}$, it's easy to know that $\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1} \in S_{k}$ is a unit if and only if $\lambda_{i} \neq 0$, that is, λ_{i} is a unit over \mathbb{F}_{q}, where $i=1,2, \ldots, 2 k+1$.

If C_{i} is a λ_{i}-constacyclic code over $\mathbb{F}_{q}, i=1,2, \ldots, 2 k+1$, then

$$
\sigma_{\lambda_{i}}\left(c_{i}\right)=\sigma_{\lambda_{i}}\left(c_{i, 0}, c_{i, 1}, \ldots, c_{i, n-1}\right)=\left(\lambda_{i} c_{i, n-1}, c_{i, 0}, \ldots, c_{i, n-2}\right) \in C_{i},
$$

and

$$
\begin{aligned}
& \sigma_{\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}}(c) \\
& \quad=\left(\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right) \sum_{i=1}^{2 k+1} e_{i} c_{i, n-1}, \sum_{i=1}^{2 k+1} e_{i} c_{i, 0}, \ldots, \sum_{i=1}^{2 k+1} e_{i} c_{i, n-2}\right) \\
& \quad=e_{1} \sigma_{\lambda_{1}}\left(c_{1}\right)+e_{2} \sigma_{\lambda_{2}}\left(c_{2}\right)+\cdots+e_{2 k+1} \sigma_{\lambda_{2 k+1}}\left(c_{2 k+1}\right) \in C .
\end{aligned}
$$

So C is a $\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right)$-constacyclic code over S_{k}.
Conversely, if C is a $\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right)$-constacyclic code over S_{k}, we have

$$
\sigma_{\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}}(c)=e_{1} \sigma_{\lambda_{1}}\left(c_{1}\right)+e_{2} \sigma_{\lambda_{2}}\left(c_{2}\right)+\cdots+e_{2 k+1} \sigma_{\lambda_{2 k+1}}\left(c_{2 k+1}\right) \in C .
$$

So $\sigma_{\lambda_{i}}\left(c_{i}\right) \in C_{i}, C_{i}$ is a λ_{i}-constacyclic code over $\mathbb{F}_{q}, i=1,2, \ldots, 2 k+1$.

Theorem 2 Let $C=\bigoplus_{j=1}^{2 k+1} e_{j} C_{j}$ be a $\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right)$-constacyclic code of length n over S_{k}, then $C=\left\langle e_{1} g_{1}(x)+e_{2} g_{2}(x)+\cdots+e_{2 k+1} g_{2 k+1}(x)\right\rangle$, where g_{i} is the generator polynomial of $C_{i}, i=1,2, \ldots, 2 k+1$.

Proof Let $C=\bigoplus_{j=1}^{2 k+1} e_{j} C_{j}$ be a $\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right)$-constacyclic n over S_{k}, by Theorem 1 , we get that C_{i} is a λ_{i}-constacyclic code over $\mathbb{F}_{q}, i=1,2, \ldots, 2 k+1$.

Because the generator polynomial of C_{i} is $g_{i}(x), i=1,2, \ldots, 2 k+1$. Then

$$
C=\left\langle e_{1} g_{1}(x), e_{2} g_{2}(x), \ldots, e_{2 k+1} g_{2 k+1}(x)\right\rangle .
$$

Let $C^{\prime}=\left\langle e_{1} g_{1}(x)+e_{2} g_{2}(x)+\cdots+e_{2 k+1} g_{2 k+1}(x)\right\rangle$. So $C^{\prime} \subseteq C$.
Because $e_{i}\left[e_{1} g_{1}(x)+e_{2} g_{2}(x)+\cdots+e_{2 k+1} g_{2 k+1}(x)\right]=e_{i} g_{i}(x), i=1,2, \ldots, 2 k+1$. So $C \subseteq C^{\prime}$.
So, we have $C=C^{\prime}$, and the generator polynomial of C is

$$
g(x)=e_{1} g_{1}(x)+e_{2} g_{2}(x)+\cdots+e_{2 k+1} g_{2 k+1}(x)
$$

Because $g_{i}(x)$ is the generator polynomial of C_{i}, g_{i} divides $x^{n}-\lambda_{i}, i=1,2, \ldots, 2 k+1$. Let $g_{i}(x) f_{i}(x)=x^{n}-\lambda_{i}, i=1,2, \ldots, 2 k+1$.

Then

$$
\begin{aligned}
& {\left[e_{1} g_{1}(x)+e_{2} g_{2}(x)+\cdots+e_{2^{k}} g_{2 k+1}(x)\right]\left[e_{1} f_{1}(x)+e_{2} f_{2}(x)+\cdots+e_{2 k+1} f_{2 k+1}(x)\right]} \\
& \quad=\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1} .
\end{aligned}
$$

So

$$
e_{1} g_{1}(x)+e_{2} g_{2}(x)+\cdots+e_{2 k+1} g_{2 k+1}(x) \mid x^{n}-\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right)
$$

Theorem 3 Let $C=\bigoplus_{j=1}^{2 k+1} e_{j} C_{j}$ be a linear code of length n over S_{k}, let C_{j}^{\perp} be the dual code of C_{j}, then $C^{\perp}=\sum_{j=1}^{2 k+1} e_{j} C_{j}^{\perp}$, where $j=1,2, \ldots, 2 k+1$.

Proof Let $\tilde{C}=\bigoplus_{j=1}^{2 k+1} e_{j} C_{j}^{\perp}, \forall x=\sum_{j=1}^{2 k+1} e_{j} x_{j} \in C, \forall \tilde{x}=\sum_{j=1}^{2 k+1} e_{j} \tilde{x}_{j} \in \tilde{C}$, where $x_{j} \in C_{j}, \tilde{x}_{j} \in C_{j}^{\perp}$.
Since $x_{j} \tilde{x}_{j}=0$, it follows that $x \cdot \tilde{x}=\sum_{j=1}^{2 k+1}\left(x_{j} \tilde{x}_{j}\right) e_{j}=0$.
So, $\tilde{C} \subseteq C^{\perp}$.
Since $|C|\left|C^{\perp}\right|=\left|S_{k}\right|^{n}$, we have

$$
|\tilde{C}|=\prod_{j=1}^{2 k+1}\left|C_{j}^{\perp}\right|=\prod_{j=1}^{2 k+1} \frac{q^{n}}{\left|C_{j}\right|}=\frac{\left|S_{k}\right|^{n}}{|C|}=\left|C^{\perp}\right| .
$$

So

$$
C^{\perp}=\tilde{C} .
$$

Theorem 4 Let $C=\bigoplus_{j=1}^{2 k+1} e_{j} C_{j}$ be a $\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right)$-constacyclic code of length n over S_{k}, then

$$
C^{\perp}=\left\langle e_{1} f_{1}^{*}(x)+e_{2} f_{2}^{*}(x)+\cdots+e_{2 k+1} f_{2 k+1}^{*}(x)\right\rangle,\left|C^{\perp}\right|=q^{\left(\sum_{i=1}^{2 k+1} \operatorname{deg}\left(g_{i}\right)\right)},
$$

$f_{i}^{*}(x)$ is the reciprocal polynomial of $f_{i}(x)=\left(x^{n}-\lambda_{i}\right) / g_{i}(x)$ which is defined as $f_{i}^{*}(x)=$ $x^{\operatorname{deg}\left(f_{i}\right)} f_{i}\left(x^{-1}\right)$, where g_{i} is the generator polynomial of $C_{i}, i=1,2, \ldots, 2 k+1$.

Proof Let $C_{i}=\left\langle g_{i}(x)\right\rangle$ be a λ_{i}-constacyclic code of length n over $\mathbb{F}_{q}, i=1,2, \ldots, 2 k+1 . \forall x=$ $\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in C_{i}^{\perp}, \forall y=\left(y_{0}, y_{1}, \ldots, y_{n-1}\right) \in C_{i}$, then $\sigma_{\lambda_{i}}^{n-1}(y)=\left(\lambda_{i} y_{1}, \lambda_{i} y_{2}, \ldots, \lambda_{i} y_{n-1}, y_{0}\right) \in$ C_{i}, and

$$
\begin{aligned}
0 & =x \cdot \sigma_{\lambda_{i}}^{n-1}(y)=\lambda_{i} x_{0} y_{1}+\lambda_{i} x_{1} y_{2}+\cdots+\lambda_{i} x_{n-2} y_{n-1}+x_{n-1} y_{0} \\
& =\lambda_{i}\left(x_{0} y_{1}+x_{1} y_{2}+\cdots+x_{n-2} y_{n-1}+\lambda_{i}^{-1} x_{n-1} y_{0}\right) \\
& =\lambda_{i} \sigma_{\lambda_{i}^{-1}}(x) \cdot y .
\end{aligned}
$$

So, $\sigma_{\lambda_{i}^{-1}}(x) \in C_{i}^{\perp}, C_{i}^{\perp}$ is a λ_{i}^{-1}-constacyclic code over \mathbb{F}_{q}.
Let $\tilde{C}_{i}=\left\langle f_{i}^{*}(x)\right\rangle$,

$$
\begin{aligned}
f_{i}^{*}(x) g_{i}^{*}(x) & =x^{\operatorname{deg}\left(f_{i}\right)} f_{i}\left(x^{-1}\right) x^{\operatorname{deg}\left(g_{i}\right)} g_{i}\left(x^{-1}\right) \\
& =x^{\operatorname{deg}\left(f_{i}\right)}\left(x^{-n}-\lambda_{i}\right) / g_{i}\left(x^{-1}\right) x^{\operatorname{deg}\left(g_{i}\right)} g_{i}\left(x^{-1}\right) \\
& =1-x^{n} \lambda_{i}=-\lambda_{i}\left(x^{n}-\lambda_{i}^{-1}\right)
\end{aligned}
$$

we have $f_{i}^{*}(x) \mid\left(x^{n}-\lambda_{i}^{-1}\right)$, so $\tilde{C}_{i} \subseteq C_{i}^{\perp}$.
Because $\left|\tilde{C}_{i}\right|=q^{n-\operatorname{deg} f_{i}^{*}}=q^{\operatorname{deg} g_{i}}=\frac{q^{n}}{\left|C_{i}\right|}=\left|C_{i}^{\perp}\right|$, we have $C_{i}^{\perp}=\tilde{C}_{i}=\left\langle f_{i}^{*}(x)\right\rangle, i=1,2, \ldots, 2 k+1$.
By Theorem 3, $C^{\perp}=\sum_{j=1}^{2 k+1} e_{j} C_{j}^{\perp}$, we have $\left|C^{\perp}\right|=\prod_{j=1}^{2 k+1}\left|C_{j}^{\perp}\right|=q^{\left(\sum_{i=1}^{2 k+1} \operatorname{deg}\left(g_{i}\right)\right)}$, and we can get the form of C^{\perp} is

$$
C^{\perp}=\left\langle e_{1} f_{1}^{*}(x), e_{2} f_{2}^{*}(x), \ldots, e_{2 k+1} f_{2 k+1}^{*}(x)\right\rangle
$$

Let $\tilde{C}^{\prime}=\left\langle e_{1} f_{1}^{*}(x)+e_{2} f_{2}^{*}(x)+\cdots+e_{2 k+1} f_{2 k+1}^{*}(x)\right\rangle$. Then $\tilde{C}^{\prime} \subseteq C^{\perp}$.
Because

$$
e_{i}\left[e_{1} f_{1}^{*}(x), e_{2} f_{2}^{*}(x), \ldots, e_{2 k+1} f_{2 k+1}^{*}(x)\right]=e_{i} f_{i}^{*}(x), \quad i=1,2, \ldots, 2 k+1 .
$$

So $C^{\perp} \subseteq \tilde{C}^{\prime}$.
We have

$$
C^{\perp}=\tilde{C}^{\prime}=\left\langle e_{1} f_{1}^{*}(x)+e_{2} f_{2}^{*}(x)+\cdots+e_{2 k+1} f_{2 k+1}^{*}(x)\right\rangle .
$$

5 Quantum codes from constacyclic codes over S_{k}

Theorem 5 Let C be a linear code of length n over S_{k}, then

$$
\phi_{k}(C)^{\perp}=\phi_{k}\left(C^{\perp}\right), \quad \varphi_{k}(C)^{\perp}=\varphi_{k}\left(C^{\perp}\right)
$$

Proof Let $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in C, b=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right) \in C^{\perp}$, where $a_{j}=a_{1, j} e_{1}+a_{2, j} e_{2}+$ $\cdots+a_{2 k+1, j} e_{2 k+1}, b_{j}=b_{1, j} e_{1}+b_{2, j} e_{2}+\cdots+b_{2 k+1, j} e_{2 k+1} \in S_{k}, j=0,1,2, \ldots, n-1, a^{(i)}=$ $\left(a_{i, 0}, a_{i, 1}, \ldots, a_{i, n-1}\right), b^{(i)}=\left(b_{i, 0}, b_{i, 1}, \ldots, b_{i, n-1}\right), i=1,2, \ldots, 2 k+1$.

Then

$$
a \cdot b=\sum_{j=0}^{n-1} a_{j} b_{j}=\sum_{j=0}^{n-1} \sum_{i=1}^{2 k+1} a_{i, j} b_{i, j} e_{i}=\sum_{i=1}^{2 k+1} a^{(i)} b^{(i)^{T}} e_{i}=0 .
$$

So

$$
a^{(i)} b^{(i)^{T}}=0, \quad i=1,2, \ldots, 2 k+1
$$

Since

$$
\phi_{k}(a)=\left(a^{(1)} A, a^{(2)} A, \ldots, a^{(2 k+1)} A\right), \quad \phi_{k}(b)=\left(b^{(1)} A, b^{(2)} A, \ldots, b^{(2 k+1)} A\right) .
$$

It follows that

$$
\begin{aligned}
\phi_{k}(a) \cdot \phi_{k}(b) & =\phi_{k}(a) \phi_{k}(b)^{T} \\
& =\sum_{i=1}^{2 k+1} a^{(i)} A A^{T} b^{(i)^{T}}=\sum_{i=1}^{2 k+1} a^{(i)} \lambda E_{n} b^{(i)^{T}} \\
& =\lambda \sum_{i=1}^{2 k+1} a^{(i)} b^{(i)^{T}}=0 .
\end{aligned}
$$

So we have

$$
\phi_{k}\left(C^{\perp}\right) \subseteq \phi_{k}(C)^{\perp} .
$$

As ϕ_{k} is a bijection, and

$$
|C|=\left|\phi_{k}(C)\right| .
$$

Then

$$
\left|\phi_{k}\left(C^{\perp}\right)\right|=\frac{q^{(2 k+1) n}}{|C|}=\frac{q^{(2 k+1) n}}{\left|\phi_{k}(C)\right|}=\left|\phi_{k}(C)^{\perp}\right| .
$$

So

$$
\phi_{k}(C)^{\perp}=\phi_{k}\left(C^{\perp}\right) .
$$

Let

$$
c=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in C, \quad d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in C^{\perp}
$$

then

$$
\varphi_{k}(c)=\left(c_{1} B, c_{2} B, \ldots, c_{n} B\right), \quad \varphi_{k}(d)=\left(d_{1} B, d_{2} B, \ldots, d_{n} B\right) .
$$

The vector forms of c_{i} and d_{i} are respectively

$$
c_{i}=\left(c_{i 1}, c_{i 2}, \ldots, c_{i(2 k+1)}\right), \quad d_{i}=\left(d_{i 1}, d_{i 2}, \ldots, d_{i(2 k+1)}\right), \quad i=1,2, \ldots, n
$$

Then

$$
\begin{aligned}
\varphi_{k}(c) \cdot \varphi_{k}(d) & =\varphi_{k}(c) \varphi_{k}(d)^{T} \\
& =\sum_{i=1}^{n} c_{i} B B^{T} d_{i}^{T}=\sum_{i=1}^{n} c_{i} \lambda E_{2 k+1} d_{i}^{T}=\lambda \sum_{i=1}^{n} c_{i} d_{i}^{T}=0 .
\end{aligned}
$$

So we have

$$
\varphi_{k}\left(C^{\perp}\right) \subseteq \varphi_{k}(C)^{\perp} .
$$

As φ_{k} is a bijection, and

$$
|C|=\left|\varphi_{k}(C)\right| .
$$

Then

$$
\left|\varphi_{k}\left(C^{\perp}\right)\right|=\frac{q^{(2 k+1) n}}{|C|}=\frac{q^{(2 k+1) n}}{\left|\varphi_{k}(C)\right|}=\left|\varphi_{k}(C)^{\perp}\right| .
$$

Therefore,

$$
\varphi_{k}(C)^{\perp}=\varphi_{k}\left(C^{\perp}\right) .
$$

Theorem 6 Let $C=\bigoplus_{j=1}^{2 k+1} e_{j} C_{j}$ be a linear code of length n over S_{k}, then C is a selforthogonal code over S_{k} if and only if C_{j} is a self-orthogonal code over \mathbb{F}_{q}, if C is a selforthogonal code over S_{k}, then $\phi_{k}(C)$ and $\varphi_{k}(C)$ are self-orthogonal codes over \mathbb{F}_{q}, where $j=1,2, \ldots, 2 k+1$.

Proof By using Theorem 1, we have $C \subseteq C^{\perp}$ if and only if $C_{j} \subseteq C_{j}^{\perp}$, so C is a self-orthogonal code over S_{k} if and only if C_{j} is a self-orthogonal code over \mathbb{F}_{q}, where $j=1,2, \ldots, 2 k+1$.
Let C be a self-orthogonal code, $\forall a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right), b=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right) \in C$, $a_{j}=$ $a_{1, j} e_{1}+a_{2, j} e_{2}+\cdots+a_{2 k+1, j} e_{2 k+1}, b_{j}=b_{1, j} e_{1}+b_{2, j} e_{2}+\cdots+b_{2 k+1, j} e_{2 k+1} \in S_{k}, j=0,1,2, \ldots, n-1$, $a^{(i)}=\left(a_{i, 0}, a_{i, 1}, \ldots, a_{i, n-1}\right), b^{(i)}=\left(b_{i, 0}, b_{i, 1}, \ldots, b_{i, n-1}\right), i=1,2, \ldots, 2 k+1$.

Then

$$
a \cdot b=\sum_{j=0}^{n-1} a_{j} b_{j}=\sum_{j=0}^{n-1} \sum_{i=1}^{2 k+1} a_{i, j} b_{i, j} e_{i}=\sum_{i=1}^{2 k+1} a^{(i)} b^{(i)^{T}} e_{i}=0 .
$$

So,

$$
a^{(i)} b^{(i)^{T}}=0, \quad i=1,2, \ldots, 2 k+1
$$

It follows that

$$
\begin{aligned}
\phi_{k}(a) \cdot \phi_{k}(b) & =\phi_{k}(a) \phi_{k}(b)^{T} \\
& =\sum_{i=1}^{2 k+1} a^{(i)} A A^{T} b^{(i)^{T}}=\sum_{i=1}^{2 k+1} a^{(i)} \lambda E_{n} b^{(i)^{T}}=\lambda \sum_{i=1}^{2 k+1} a^{(i)} b^{(i)^{T}}=0 .
\end{aligned}
$$

So $\phi_{k}(C)$ is a self-orthogonal code over \mathbb{F}_{q}.
Let $c=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in C, d=\left(d_{1}, d_{2}, \ldots, d_{n}\right) \in C$, then

$$
\begin{aligned}
& \varphi_{k}(c)=\left(c_{1} B, c_{2} B, \ldots, c_{n} B\right), \quad \varphi_{k}(d)=\left(d_{1} B, d_{2} B, \ldots, d_{n} B\right) . \\
& c_{i}=c_{i, 1} e_{1}+c_{i, 2} e_{2}+\cdots+c_{i, 2 k+1} e_{2 k+1} \in S_{k}, \\
& d_{i}=d_{i, 1} e_{1}+d_{i, 2} e_{2}+\cdots+d_{i, 2 k+1} e_{2 k+1} \in S_{k},
\end{aligned}
$$

where $i=1,2, \ldots, n$.
The vector forms of c_{i} and d_{i} are respectively

$$
c_{i}=\left(c_{i, 1}, c_{i, 2}, \ldots, c_{i, 2 k+1}\right), \quad d_{i}=\left(d_{i, 1}, d_{i, 2}, \ldots, d_{i, 2 k+1}\right), \quad i=1,2, \ldots, n .
$$

Since C is a self-orthogonal code,

$$
c \cdot d=\sum_{j=1}^{n} c_{j} d_{j}=\sum_{i=1}^{n} \sum_{j=1}^{2 k+1} c_{i, j} d_{i, j} e_{i}=\sum_{i=1}^{2 k+1} c_{i} d_{i}^{T} e_{i}=0 .
$$

So,

$$
c_{i} d_{i}^{T}=0, \quad i=1,2, \ldots, 2 k+1 .
$$

Then,

$$
\begin{aligned}
\varphi_{k}(c) \cdot \varphi_{k}(d) & =\varphi_{k}(c) \varphi_{k}(d)^{T} \\
& =\sum_{i=1}^{n} c_{i} B B^{T} d_{i}^{T}=\sum_{i=1}^{n} c_{i} \lambda E_{2 k+1} d_{i}^{T}=\lambda \sum_{i=1}^{n} c_{i} d_{i}^{T}=0 .
\end{aligned}
$$

So $\varphi_{k}(C)$ is a self-orthogonal code over \mathbb{F}_{q}.

Lemma 5 Let C be a constacyclic code over \mathbb{F}_{q}, the generator polynomial is $g(x)$. Then, C contains its dual code if and only if $x^{n}-\lambda \equiv 0\left(\bmod g(x) g^{*}(x)\right)$, where $g^{*}(x)$ is the reciprocal polynomial of $g(x), \lambda= \pm 1$.

Proof Let $C^{\perp}=\left\langle f^{*}(x)\right\rangle$ be the dual code of C, where $f(x)=\left(x^{n}-\lambda\right) / g(x), \lambda= \pm 1$. C contains its dual code if and only if there exists $h(x) \in \mathbb{F}_{q}[x]$, such that $f^{*}(x)=g(x) h(x)$ if and only if $g^{*}(x) g(x)=\frac{\lambda\left(x^{n}-\lambda^{-1}\right)}{f^{*}(x)} g(x)=\frac{\lambda\left(x^{n}-\lambda^{-1}\right)}{g(x) h(x)} g(x)=\frac{\lambda\left(x^{n}-\lambda\right)}{h(x)}$ if and only if $\left(x^{n}-\lambda\right)=\lambda^{-1} g^{*}(x) g(x) h(x) \equiv$ $0\left(\bmod g(x) g^{*}(x)\right)$.

Theorem 7 (CSS construction, [20]) Let $C_{1}=\left[n, k_{1}, d_{1}\right] q$ and $C_{2}=\left[n, k_{2}, d_{2}\right] q$ be linear codes over \mathbb{F}_{q}, with $C_{2}^{\perp} \subseteq C_{1}^{\perp}$. Let $d=\min \left(d_{1}, d_{2}\right)$, then there exists a quantum errorcorrecting code C with parameters $C=\left[\left[n, k_{1}+k_{2}-n, \geq d\right]\right]_{q}$. In particular, if $C_{1}^{\perp} \subseteq C_{1}$, then there exists a quantum error-correcting code $C=\left[\left[n, 2 k_{1}-n, \geq d_{1}\right]\right]_{q}$.

Theorem 8 Let $C=\bigoplus_{j=1}^{2 k+1} e_{j} C_{j}$ be a $\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right)$-constacyclic code of length n over S_{k}, where $\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right)$ is a unit in S_{k}. Then $C^{\perp} \subseteq C$ if and only if $x^{n}-\lambda_{i} \equiv 0\left(\bmod g_{i}(x) \tilde{g}_{i}(x)\right)$, where g_{i} is the generator polynomial of $C_{i}, \tilde{g}_{i}(x)=\frac{1}{g_{i}(0)} g_{i}^{*}(x)=$ $\frac{1}{g_{i}(0)} x^{\operatorname{deg}_{i}} g_{i}\left(x^{-1}\right), i=1,2, \ldots, 2 k+1$.

Proof If $x^{n}-\lambda_{i} \equiv 0\left(\bmod g_{i}(x) \tilde{g}_{i}(x)\right)$, by Lemma 5, we have $C_{i}^{\perp} \subseteq C_{i}, i=1,2, \ldots, 2 k+1$, then $e_{i} C_{i}^{\perp} \subseteq e_{i} C_{i}$, so $C^{\perp}=\bigoplus_{j=1}^{2 k+1} e_{j} C_{j}^{\perp} \subseteq \bigoplus_{j=1}^{2 k+1} e_{j} C_{j}=C$.

Conversely, let $C^{\perp} \subseteq C$, then $C^{\perp}=\bigoplus_{j=1}^{2 k+1} e_{j} C_{j}^{\perp} \subseteq \bigoplus_{j=1}^{2 k+1} e_{j} C_{j}=C$, we have $C_{i}^{\perp} \subseteq C_{i}$, by Lemma 5, we have $x^{n}-\lambda_{i} \equiv 0\left(\bmod g_{i}(x) \tilde{g}_{i}(x)\right) i=1,2, \ldots, 2 k+1$.

By using Lemma 5 and Theorem 8, we can have the following corollary.
Corollary 1 Let $C=\bigoplus_{j=1}^{2 k+1} e_{j} C_{j}$ be a $\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right)$-constacyclic code of length n over S_{k}, where $\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right)$ is a unit in S_{k}. Then $C^{\perp} \subseteq C$ if and only if $C_{i}^{\perp} \subseteq C_{i}$, where C_{i} is a λ_{i}-constacyclic code of length n over $\mathbb{F}_{q}, \lambda_{i}= \pm 1, i=1,2, \ldots, 2 k+1$.

By using Theorem 7 and Theorem 8 we can have the following theorems.
Theorem 9 Let $C=\bigoplus_{j=1}^{2 k+1} e_{j} C_{j}$ be a $\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right)$-constacyclic code of length n over S_{k}.Let C_{i} be a λ_{i}-constacyclic code of length n over $\mathbb{F}_{q}, C_{i}^{\perp} \subseteq C_{i}$, where $\lambda_{i}= \pm 1$, $i=1,2, \ldots, 2 k+1$, then $C^{\perp} \subseteq C$ and there exists a quantum error-correcting code with parameters $[[(2 k+1) n, 2 l-(2 k+1) n, \geq d]]_{q}$, where d is the minimum Gray weight of code C, and l is the dimension of the linear code $\phi_{k}(C)$.

Theorem 10 Let $C=\bigoplus_{j=1}^{2 k+1} e_{j} C_{j}$ be a $\left(\lambda_{1} e_{1}+\lambda_{2} e_{2}+\cdots+\lambda_{2 k+1} e_{2 k+1}\right)$-constacyclic code of length n over S_{k}.Let C_{i} be a λ_{i}-constacyclic code of length n over $\mathbb{F}_{q}, C_{i}^{\perp} \subseteq C_{i}$, where $\lambda_{i}= \pm 1$, $i=1,2, \ldots, 2 k+1$, then $C^{\perp} \subseteq C$ and there exists a quantum error-correcting code with parameters $[[(2 k+1) n, 2 l-(2 k+1) n, \geq d]]_{q}$, where d is the minimum Gray weight of code C, and l is the dimension of the linear code $\varphi_{k}(C)$.

Example 1 Let

$$
B=\left[\begin{array}{ccccc}
1 & -2 & 2 & 0 & 0 \\
-2 & 1 & 2 & 0 & 0 \\
2 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right]
$$

$S_{2}=\mathbb{F}_{5}\left[u_{1}, u_{2}\right] /\left\langle u_{1}^{3}=u_{1}, u_{2}^{3}=u_{2}, u_{1} u_{2}=u_{2} u_{1}=0\right\rangle, e_{1}=\frac{u_{1}^{2}+u_{1}}{2}, e_{2}=\frac{u_{1}^{2}-u_{1}}{2}, e_{3}=\frac{u_{2}^{2}+u_{2}}{2}, e_{4}=$ $\frac{u_{2}^{2}-u_{2}}{2}, e_{5}=1-u_{1}^{2}-u_{2}^{2}$, when $n=30$,

$$
\begin{aligned}
& x^{30}+1=(x+2)^{5}(x+3)^{5}\left(x^{2}+2 x+4\right)^{5}\left(x^{2}+3 x+4\right)^{5}, \\
& x^{30}-1=(x+1)^{5}(x+4)^{5}\left(x^{2}+x+1\right)^{5}\left(x^{2}+4 x+1\right)^{5} \quad \text { in } \mathbb{F}_{5}(x) .
\end{aligned}
$$

Let C be a $\left(1-2 u_{2}^{2}\right)$-constacyclic code of length 30 over S_{2} with generator polynomial $e_{1} g_{1}(x)+e_{2} g_{2}(x)+e_{3} g_{3}(x)+e_{4} g_{4}(x)+e_{5} g_{5}(x)$, where $g_{1}=x+1, g_{2}=x+4, g_{3}=x+2, g_{4}=x+3$, $g_{5}=x+1$, then $x^{n}-1 \equiv 0\left(\bmod g_{i}(x) \tilde{g}_{i}(x)\right)$, when $i=1,2,5, x^{n}+1 \equiv 0\left(\bmod g_{i}(x) \tilde{g}_{i}(x)\right)$, when $i=3,4$. By using Theorem 8, we have $C^{\perp} \subseteq C$ and $\phi_{2}(C)$ is a linear code over \mathbb{F}_{5} with parameters [150, 145, 2]. By Theorem 9, we know that there is a quantum error correcting code with parameters $[[150,140, \geq 2]]_{5}$.

Example 2 Let

$$
B=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 0 \\
1 & 1 & -1 & -1 & 0 \\
1 & -1 & 1 & -1 & 0 \\
1 & -1 & -1 & 1 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]
$$

$S_{2}=\mathbb{F}_{7}\left[u_{1}, u_{2}\right] /\left\langle u_{1}^{3}=u_{1}, u_{2}^{3}=u_{2}, u_{1} u_{2}=u_{2} u_{1}=0\right\rangle, e_{1}=\frac{u_{1}^{2}+u_{1}}{2}, e_{2}=\frac{u_{1}^{2}-u_{1}}{2}, e_{3}=\frac{u_{2}^{2}+u_{2}}{2}, e_{4}=$ $\frac{u_{2}^{2}-u_{2}}{2}, e_{5}=1-u_{1}^{2}-u_{2}^{2}$, when $n=15$,

$$
\begin{aligned}
x^{15}-1= & (x+3)(x+5)(x+6)\left(x^{4}+x^{3}+x^{2}+x+1\right) \\
& \times\left(x^{4}+2 x^{3}+4 x^{2}+x+2\right)\left(x^{4}+4 x^{3}+2 x^{2}+x+4\right), \\
x^{15}+1= & (x+1)(x+2)(x+4)\left(x^{4}+3 x^{3}+2 x^{2}+6 x+4\right) \\
& \times\left(x^{4}+5 x^{3}+4 x^{2}+6 x+2\right)\left(x^{4}+6 x^{3}+x^{2}+6 x+1\right) .
\end{aligned}
$$

Let C be a $\left(1-2 u_{1}^{2}-u_{2}^{2}\right)$-constacyclic code of length 15 over S_{2} with generator polynomial $e_{1} g_{1}(x)+e_{2} g_{2}(x)+e_{3} g_{3}(x)+e_{4} g_{4}(x)+e_{5} g_{5}(x)$, where $g_{1}=x^{4}+3 x^{3}+2 x^{2}+6 x+4, g_{2}=x^{4}+5 x^{3}+$ $4 x^{2}+6 x+2, g_{3}=g_{4}=x^{4}+6 x^{3}+x^{2}+6 x+1, g_{5}=x^{4}+x^{3}+x^{2}+x+1$. By using Theorem 8 , we have $C^{\perp} \subseteq C$ and $\varphi_{2}(C)$ is a linear code over \mathbb{F}_{7} with parameters [85, 65, 4]. By Theorem 10 , we know that there is a quantum error correcting code with parameters $[[85,45, \geq 4]]_{7}$.

Example 3 Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right]
$$

$n=3$ and $S_{1}=\mathbb{F}_{7}\left[u_{1}\right] /\left\langle u_{1}^{3}=u_{1}\right\rangle, e_{1}=\frac{u_{1}^{2}+u_{1}}{2}, e_{2}=\frac{u_{1}^{2}-u_{1}}{2}, e_{3}=1-u_{1}^{2}, x^{3}+1=(x+1)(x+2)(x+4)$, $x^{3}-1=(x+3)(x+5)(x+6)$.

Let C be a $\left(2 u_{1}^{2}-1\right)$-constacyclic code of length 3 over S_{1} with generator polynomial $e_{1} g_{1}(x)+e_{2} g_{2}(x)+e_{3} g_{3}(x)$, where $g_{1}=x+3, g_{2}=x+5, g_{3}=x+4$. By Theorem 8 , we have $C^{\perp} \subseteq C$, and $\phi_{1}(C)$ is a linear code over \mathbb{F}_{7} with parameters [9,6,2]. By Theorem 9, we know that there is a quantum error correcting code with parameters $[[9,3, \geq 2]]_{7}$.

In Table 1, we provide some new quantum codes $[[n, l, d]]_{q}$ (in the sixth column) and compare the constructed codes $\left[\left[n^{\prime}, l^{\prime}, d^{\prime}\right]\right]_{q}$ (in the seventh column) better (by means of larger code rate or larger distance) than the existing references [13, 16, 17]. Further, the

Table 1 New Quantum codes over S_{k}

n	k	$\left(\lambda_{1}, \ldots, \lambda_{2 k+1}\right)$	$\left\langle g_{1}(x), \ldots, g_{2 k+1}(x)\right\rangle$	$\varphi_{k}(C)$	$[[n, l, d]]_{q}$	$\left[\left[n^{\prime}, l^{\prime}, d^{\prime}\right]\right]_{q}$
8	1	$(1,1,-1)$	$(112,112,1022)$	$[24,16,3]$	$[[24,8, \geq 3]]_{3}$	$[[24,8,2]]_{3}[13]$
24	1	$(1,1,1)$	$(1101,11,11)$	$[72,67,3]$	$[[72,62, \geq 3]]_{3}$	$[[72,48,2]]_{3}[13]$
26	1	$(1,1,1)$	$(101102,121,121)$	$[78,66,4]$	$[[78,54, \geq 4]]_{3}$	$[[78,48,4]]_{3}[17]$
12	1	$(1,1,1)$	$(1111,11,11)$	$[36,31,4]$	$[[36,26, \geq 4]]_{3}$	$[[36,24,3]]_{3}[17]$
28	1	$(1,1,1)$	$(1111,11,11)$	$[84,79,4]$	$[[84,75, \geq 4]]_{7}$	$[[84,72,3]]_{7}[17]$
16	1	$(1,1,1)$	$\left(1 \omega^{2} \omega^{3} \omega^{5}, 1 \omega^{2}, 1 \omega^{2}\right)$	$[48,43,3]$	$[[48,38, \geq 3]]_{9}$	$[[48,30,3]]_{9}[16]$

first column represents the length n, the second column is parameter k for S_{k}, the third column gives the value of units $\left(\lambda_{1}, \ldots, \lambda_{2 k+1}\right)$, the fourth column gives the generator polynomials $\left\langle g_{1}(x), \ldots, g_{2 k+1}(x)\right\rangle$, where $g_{i}(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ is denoted by $a_{n} a_{n-1} \cdots a_{1} a_{0}$, e.g., 112 represents the polynomial $x^{2}+x+2$, the fifth column gives parameters of $\varphi_{k}(C)$.

6 Conclusion

In this paper, we study the structure of constacyclic codes over the non-chain rings $S_{k}=$ $\mathbb{F}_{q}\left[u_{1}, u_{2}, \ldots, u_{k}\right] /\left\langle u_{i}^{3}=u_{i}, u_{i} u_{j}=u_{j} u_{i}=0\right\rangle$, and apply the CSS construction on Gray images of dual containing constacyclic codes to obtain some new quantum codes improving the existing codes that appeared in some recent references.

Acknowledgements

The authors would like to thank the referees and the editor for their careful reading the paper and valuable comments and suggestions, which improved the presentation of this manuscript.

Funding

This work was supported by the Key Technologies Research and Development Program of Henan Province (No. 212102210573) and Zhengzhou Special Fund for Basic Research and applied basic research (No. ZZSZX202111)

Availability of data and materials
All data generated or analysed during this study are included in this published article.

Declarations

Ethics approval and consent to participate

Not applicable
Consent for publication
We agree to publication in the Journal.

Competing interests

The authors declare no competing interests.

Author contributions

All authors have read and agreed to the published version of the manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 11 June 2022 Accepted: 25 January 2023 Published online: 06 February 2023

References

1. Calderbank AR, Rains EM, Shor PM et al. Quantum error correction via codes over GF(4). IEEE Trans Inf Theory. 1998;44:1369-87. https://doi.org/10.1109/18.681315.
2. Chen B, Dinh HQ, Liu H. Repeated-root constacyclic codes of length $2 /^{m} p^{n}$. Finite Fields Appl. 2015;33:137-59 https://doi.org/10.1016/j.ffa.2014.11.006.
3. Chen B, Liu H. Constructions of cyclic constant dimension codes. Des Codes Cryptogr. 2018;86:1267-79. https://doi.org/10.1007/s10623-017-0394-9.
4. Li J, Gao J, Fu FW et al. $\mathbb{F}_{q} R$-Linear skew constacyclic codes and their application of constructing quantum codes. Quantum Inf Process. 2020;19:193. https://doi.org/10.1007/s11128-020-02700-x.
5. Dinh $H Q$, Kewat $P K$, Kushwaha S et al. Constacyclic codes of length p^{s} over $\mathbb{F}_{p^{m}} /\left\langle u^{2}, v^{2}, u v-v u\right\rangle$. Discrete Math. 2020;343:111890. https://doi.org/10.1016/j.disc.2020.111890.
6. Kumar R, Bhaintwal M. A class of constacyclic codes and skew constacyclic codes over $\mathbb{Z}_{2^{s}}+u \mathbb{Z}_{2^{s}}$ and their gray images. J Appl Math Comput. 2021;66:111-28. https://doi.org/10.1007/s12190-020-01425-5.
7. Zheng X, Kong B. Cyclic codes and $\lambda_{1}+\lambda_{2} u+\lambda_{3} v+\lambda_{4} u v$-constacyclic codes over $\mathbb{F}_{p}+u \mathbb{F}_{p}+v \mathbb{F}_{p}+u v \mathbb{F}_{p}$. Appl Math Comput. 2017;306:86-91. https://doi.org/10.1016/j.amc.2017.02.017.
8. Zheng X, Kong B. Constacyclic codes over $\mathbb{F}_{p}\left[u_{1}, u_{2}, \ldots, u_{k}\right] /\left\langle u_{i}^{2}=u_{i}, u_{i} u_{j}=u_{j} u_{i}\right\rangle$. Open Math. 2018;16:490-7. https://doi.org/10.1515/math-2018-0045
9. Kong B, Zheng X, Ma H. The depth spectrums of constacyclic codes over finite chain rings. Discrete Math. 2015;338:256-61. https://doi.org/10.1016/j.disc.2014.09.013.
10. Liu HW, Liu JG. On σ-self-orthogonal constacyclic codes over $\mathbb{F}_{p^{m}}+u \mathbb{F}_{p^{m}}$. Adv Math Commun. 2022;16:643-65. https://doi.org/10.3934/amc. 2020127.
11. Dertli A, Cengellenmis Y, Eren S. On quantum codes obtained from cyclic codes over A_{2}. Int J Quantum Inf. 2015;13:1550031. https://doi.org/10.1142/S0219749915500318.
12. Gao Y, Gao J, Fu FW. Quantum codes from cyclic codes over the ring $\mathbb{F}_{q}+v_{1} \mathbb{F}_{q}+\cdots+v_{r} \mathbb{F}_{q}$. Appl Algebra Eng Commun Comput. 2019;30:161-74. https://doi.org/10.1007/s00200-018-0366-y.
13. Islam H, Prakash O. Quantum codes from the cyclic codes over $\mathbb{F}_{p}[u, v, w] /\left\langle u^{2}-1, v^{2}-1, w^{2}-1, u v-v u, v w-w v, w u-u w\right\rangle . J$ Appl Math Comput. 2019;60:625-35. https://doi.org/10.1007/s12190-018-01230-1.
14. Rani S, Verma RK, Prakash O. Quantum codes from repeated-root cyclic and negacyclic codes of length $4 p^{5}$ over $\mathbb{F}_{p m}$. Int J Theor Phys. 2021;60:1299-327. https://doi.org/10.1007/s10773-021-04757-5.
15. Wang Y, Kai X, Sun Z et al. Quantum codes from Hermitian dual-containing constacyclic codes over $\mathbb{F}_{q^{2}}+v \mathbb{F}_{q^{2}}$ Quantum Inf Process. 2021;20:122. https://doi.org/10.1007/s11128-021-03052-w.
16. Prakash O, Islam H, Patel S et al. New quantum codes from skew constacyclic codes over a class of non-chain rings $\mathbb{R}_{e, q}$. Int J Theor Phys. 2021;60:3334-52. https://doi.org/10.1007/s10773-021-04910-0.
17. Ashra M, Khan N, Mohammad G. Quantum codes from cyclic codes over the mixed alphabet structure. Quantum Inf Process. 2022;21:180. https://doi.org/10.1007/s11128-022-03491-z.
18. Dertli A, Cengellenmis Y. Quantum codes obtained from some constacyclic codes over a family of finite rings $\mathbb{F}_{p}+u \mathbb{F}_{p}+v \mathbb{F}_{p}$. Math Comput Sci. 2020;14:437-41. https://doi.org/10.1007/s11786-019-00426-3.
19. Islam H, Prakash O. New quantum codes from constacyclic and additive constacyclic codes. Quantum Inf Process. 2020;19:319. https://doi.org/10.1007/s11128-020-02825-z.
20. Ketkar A, Klappenecker A, Kumar S et al. Nonbinary Stabilizer Codes Over Finite Fields. IEEE Trans Inf Theory, 2006;52:4892-914. https://doi.org/10.1109/TIT.2006.883612.

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

[^0]: © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

