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Abstract
Let Sk = Fq[u1,u2, . . . ,uk]/〈u3i = ui ,uiuj = ujui = 0〉, where 1 ≤ i, j ≤ k, q = pm, p is an odd
prime. First, we define two new Gray maps φk and ϕk , and study their Gray images.
Further, we determine the structure of constacyclic codes and their dual codes, and
give a necessary and sufficient conditions of constacyclic codes to contain their duals.
Finally, we obtain some new quantum codes over Fq by using CSS construction, and
compare the constructed codes better than the existing literature.
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1 Introduction
In recent years, quantum theory and technology has become a popular research in the field
of information, the research progress of some mathematical problems plays a key role in
the study of quantum error correction problems. Calderbank et al. [1] gave a way to con-
struct quantum error correcting codes from classical error correcting codes, construct-
ing quantum error correcting codes is a systematic and effective mathematical method
by using constacyclic codes. There are a lot of works about constacyclic codes over fi-
nite fields and finite rings [2–10] and many good quantum codes constructed by using
cyclic codes over finite rings [11–14]. Currently, some authors have obtained quantum
codes from constacyclic codes over finite non-chain ring. Wang et al. [15] studied quan-
tum codes over Fq from Hermitian dual-containing constacyclic codes over Fq2 + vFq2 .
Prakash et al. [16] obtained quantum codes from skew constacyclic codes over a class of
non-chain rings Re,q = Fq[u]/〈ue – 1〉 by applying the CSS construction. Ashraf et al. [17]
constructed quantum codes from FqR1R2-cyclic codes and introduced a Gray map to find
some new and better quantum codes over Fp. Dertli and Cengellenmis [18] studied quan-
tum codes from constacyclic codes over the finite ring uFp +vFp +uvFp, Islam and Prakash
[19] constructed quantum codes from λ = (λ1 + uλ2 + vλ3)-constacyclic codes over a class
of finite commutative non-chain rings Fq[u, v]/〈u2 – γ u, v2 – δv, uv = vu = 0〉.
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Due to the strong motivation discussed above, we construct some new quantum codes
by studying the structure of constacyclic codes over a finite non-chain ring. The major
two contributions of this paper are as follows.

1. In general, it is difficult to determine the structure of constacyclic codes over a finite
non-chain ring, we study the structure of λ-constacyclic codes and their dual codes
over the ring Sk , and give a necessary and sufficient conditions of dual-containing
constacyclic codes.

2. As an application, we obtain some new quantum codes from constacyclic codes over
Sk by using CSS construction and compare these codes better than the existing codes
that appeared in some recent references.

2 Preliminaries
Let Sk = Fq[u1, u2, . . . , uk]/〈u3

i = ui, uiuj = ujui = 0〉, where q = pm and p is an odd prime.
The ring Sk is a commutative and Frobenius ring with identity but not local, and the car-
dinality of Sk is q(2k+1).

Let e1 = u2
1+u1

2 , e2 = u2
1–u1

2 , . . . , e2k–1 = u2
k +uk

2 , e2k = u2
k –uk

2 , e2k+1 = 1 – u2
1 – u2

2 – · · ·– u2
k , where

eiej = 0, when i �= j, and e2
i = ei, when i = 1, 2, . . . , 2k + 1, and 1 = e1 + e2 + · · · + e2k+1. By the

Chinese Remainder Theorem we can get that

Sk = e1Sk ⊕ e2Sk ⊕ · · · ⊕ e2k+1Sk .

∀r ∈ Sk , r can be expressed uniquely as r = r1e1 + r2e2 + · · · + r2k+1e2k+1, where ri ∈ Fq,
i = 1, 2, . . . , 2k + 1.

By the definition above, it can be easily seen that Sk is a principal ideal ring but not a
chain ring, which has 2k + 1 maximal ideals. For any element (λ1e1 +λ2e2 + · · ·+λ2k+1e2k+1)
of Sk , (λ1e1 + λ2e2 + · · · + λ2k+1e2k+1) is a unit if and only if λ1,λ2, . . . ,λ2k+1 are units over Fq.

If C is a code of length n over Sk , then C is a subset of Sn
k . C is a linear code of length n

over Sk if and only if C is an Sk-submodule of Sn
k .

For any unit λ ∈ Sk , a code C is called a λ-constacyclic code of length n over Sk if and
only if C is invariant under constacyclic shift operator σλ : Sn

k → Sn
k by

σλ(c0, c1, . . . , cn–1) = (λcn–1, c0, . . . , cn–2).

When λ = 1, C is a cyclic code, when λ = –1, C is a negacyclic code.
If C is a linear code of length n over Sk , the dual code of C is defined as

C⊥ = {x | ∀y ∈ C, x · y = 0},

where x · y =
∑n–1

i=0 xiyi, x = (x0, x1, . . . , xn–1) ∈ Sn
k , y = (y0, y1, . . . , yn–1) ∈ Sn

k .

3 Gray maps
Let A be an n × n matrix, such that AAT = λEn, where AT denotes the transpose of the
matrix A, En is the identity matrix of order n, λ ∈ Fq and λ �= 0.

Definition 1 We define a Gray map φk : Sk → F
2k+1
q by r �→ (r1, r2, . . . , r2k+1), where r =

r1e1 + r2e2 + · · · + r2k+1e2k+1.
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And φk can be expanded as:

φk : Sn
k → F

(2k+1)n
q

(a0, a1, . . . , an–1) �→ (
a(1)A, a(2)A, . . . , a(2k+1)A

)
,

where

aj = a1,je1 + a2,je2 + · · · + a2k+1,je2k+1 ∈ Sk , j = 0, 1, 2, . . . , n – 1,

and

a(i) = (ai,0, ai,1, . . . , ai,n–1), i = 1, 2, . . . , 2k + 1.

When the Gray map is defined as φk , the Gray weight of a ∈ Sk is defined as wG(a) =
wH (φk(a)), where wH (φk(a)) denotes the Hamming weight of φk(a).

The Gray weight of a vector r = (x1, x2, . . . , xn) ∈ Sn
k is defined as wG(r) =

∑n
i=1 wG(xi), the

Gray distance of x, y ∈ Sn
k is given by dG(x, y) = wG(x – y), and the minimum Gray distance

of C is defined as

dG(C) = min
{

dG(x – y), x, y ∈ C, x �= y
}

.

Lemma 1 φk is both a bijection and a distance preserving linear map from Sn
k to

F
(2k+1)n
q .

Proof Let a = (a0, a1, . . . , an–1) ∈ Sn
k , b = (b0, b1, . . . , bn–1) ∈ Sn

k , l ∈ Fq, where aj = a1,je1 +
a2,je2 + · · · + a2k+1,je2k+1 ∈ Sk , bj = b1,je1 + b2,je2 + · · · + b2k+1,je2k+1 ∈ Sk , j = 0, 1, 2, . . . , n – 1,
a(i) = (ai,0, ai,1, . . . , ai,n–1), b(i) = (bi,0, bi,1, . . . , bi,n–1), i = 1, 2, . . . , 2k + 1.

Then

φk(a + b) = φk(a0 + b0, a1 + b1, . . . , an–1 + bn–1)

=
((

a(1) + b(1))A,
(
a(2) + b(2))A, . . . ,

(
a(2k+1) + b(2k+1))A

)

=
(
a(1)A, a(2)A, . . . , a(2k+1)A

)
+

(
b(1)A, b(2)A, . . . , b(2k+1)A

)

= φk(a) + φk(b),

φk(la) = φk(la0, la1, . . . , lan–1)

= (la0A, la1A, . . . , lan–1A)

= l
(
a(1)A, a(2)A, . . . , a(2k+1)A

)

= lφk(a).

So φk is linear.
∀a, b ∈ Sn

k , suppose φk(a) = φk(b), then

(
a(1)A, a(2)A, . . . , a(2k+1)A

)
=

(
b(1)A, b(2)A, . . . , b(2k+1)A

)
.
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Because A is an invertible matrix, we have

(
a(1), a(2), . . . , a(2k+1)) =

(
b(1), b(2), . . . , b(2k+1)),

so a = b, φk is an injection.
As

∣
∣Sn

k
∣
∣ =

∣
∣F(2k+1)n

q
∣
∣ = q(2k+1)n,

so φk is a bijection.
∀a, b ∈ Sn

k , then

a – b = (a0 – b0, a1 – b1, . . . , an–1 – bn–1),

φk(a – b) =
((

a(1) – b(1))A,
(
a(2) – b(2))A, . . . ,

(
a(2k+1) – b(2k+1))A

)
= φk(a) – φk(b),

dG(a, b) = wG(a – b) = wH
(
φk(a – b)

)
= wH

(
φk(a) – φk(b)

)
= dH

(
φk(a),φk(b)

)
.

So φk is a distance preserving map from Sn
k to F

(2k+1)n
q . �

By Lemma 1 and the definition of φk , we can have the following lemma.

Lemma 2 Let C be a linear code of length n over Sn
k and the minimal Gray distance of C

is d, then φk(C) is a [(2k + 1)n, l, d] linear code over Fq, where l = logq |C|.

Let B be a (2k + 1) × (2k + 1) matrix, such that BBT = λE2k+1, where BT denotes the
transpose of the matrix B, E2k+1 is the identity matrix of order 2k + 1, λ ∈ Fq and λ �= 0.
∀r = r1e1 + r2e2 + · · · + r2k+1e2k+1 ∈ Sk , the vector form of r is written as r = (r1, r2, . . . , r2k+1).

Definition 2 We define a Gray map ϕk : Sk → F
2k+1
q by r �→ rB.

And ϕk can be expanded as

ϕk : Sn
k → F

(2k+1)n
q

(a0, a1, . . . , an–1) �→ (a0B, a1B, . . . , an–1B),

where ai = a1,ie1 + a2,ie2 + · · · + a2k+1,ie2k+1 ∈ Sk , i = 0, 1, 2, . . . , n – 1.
When the Gray map is defined as ϕk , the Gray weight of a ∈ Sk is defined as wG(a) =

wH (ϕk(a)), where wH (ϕk(a)) denotes the Hamming weight of ϕk(a).
The Gray weight of a vector r = (x1, x2, . . . , xn) ∈ Sn

k is defined as wG(r) =
∑n

i=1 wG(xi), the
Gray distance of x, y ∈ Sn

k is given by dG(x, y) = wG(x – y), and the minimum Gray distance
of C is defined as

dG(C) = min
{

dG(x – y), x, y ∈ C, x �= y
}

.

Lemma 3 ϕk is both a bijection and a distance preserving linear map from Sn
k to F

(2k+1)n
q .
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Proof Let a, b ∈ Sn
k , where a = (a0, a1, . . . , an–1), b = (b0, b1, . . . , bn–1), l ∈ Fq. Then

ϕk(a + b) = ϕk(a0 + b0, a1 + b1, . . . , an–1 + bn–1)

=
(
(a0 + b0)B, (a1 + b1)B, . . . , (an–1 + bn–1)B

)

= (a0B, a1B, . . . , an–1B) + (b0B, b1B, . . . , bn–1B)

= ϕk(a) + ϕk(b),

ϕk(la) = φk(la0, la1, . . . , lan–1) = (la0B, la1B, . . . , lan–1B)

= l(a0B, a1B, . . . , an–1B)

= lφk(a).

So ϕk is linear.
∀a, b ∈ Sn

k , suppose ϕk(a) = ϕk(b), then

(a0B, a1B, . . . , an–1B) = (b0B, b1B, . . . , bn–1B).

Because B is an invertible matrix, we have a = (a0, a1, . . . , an–1) = (b0, b1, . . . , bn–1) = b, ϕk

is an injection.
As

∣
∣Sn

k
∣
∣ =

∣
∣F(2k+1)n

q
∣
∣ = q(2k+1)n,

so ϕk is a bijection.
∀a, b ∈ Sn

k , then

a – b = (a0 – b0, a1 – b1, . . . , an–1 – bn–1),

ϕk(a – b) =
(
(a0 – b0)B, (a1 – b1)B, . . . , (an–1 – bn–1)B

)
= ϕk(a) – ϕk(b),

dG(a, b) = wG(a – b) = wH
(
ϕk(a – b)

)
= wH

(
ϕk(a) – ϕk(b)

)
= dH

(
ϕk(a),ϕk(b)

)
.

So ϕk is a distance preserving map from Sn
k to F

(2k+1)n
q . �

By Lemma 3 and the definition of ϕk , we can have the following lemma.

Lemma 4 Let C be a linear code of length n over Sn
k and the minimal Gray distance of C

is d, then ϕk(C) is a [(2k + 1)n, l, d] linear code over Fq, where l = logq |C|.

4 Constacyclic codes over Sk

Let C be a linear code of length n over Sk and define

Cj =

{

xj ∈ F
n
q

∣
∣
∣
∣

2k+1∑

i=1

xiei ∈ C, xi ∈ F
n
q

}

, j = 1, 2, . . . , 2k + 1,

then, C1, C2, . . . , C2k+1 are linear codes of length n over Fq.
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Moreover, the linear code C of length n over Sk can be represented as

C =
2k+1⊕

j=1

ejCj.

Let Gj be the Generator matrices of Cj, then the Generator matrix of C is

G =

⎡

⎢
⎢
⎢
⎣

e1G1

e2G2

· · ·
e2k+1G2k+1

⎤

⎥
⎥
⎥
⎦

.

Definition 3 We define a quasi-cyclic shift on (Fn
q)2k+1,

ψ2k+1(a1,0, a1,1 · · · , a1,n–1, a2,0, a2,1 · · · , a2,n–1,

· · · , a2k+1,0, a2k+1,1 · · · , a2k+1,n–1)

=
(
σ (a1,0, a1,1 · · · , a1,n–1),σ (a2,0, a2,1 · · · , a2,n–1),

· · · ,σ (a2k+1,0, a2k+1,1 · · · , a2k+1,n–1)
)
.

Proposition 1 Let σ be the cyclic shift operator on Sn
k , let ψ2k+1 be the quasi-cyclic shift on

(Fn
q)2k+1 defined as above. Then φkσ = ψ2k+1φk .

Proof Let (a0, a1, . . . , an–1) ∈ Sn
k , where aj = a1,je1 + a2,je2 + · · · + a2k+1,je2k+1 ∈ Sk , j =

0, 1, 2, . . . , n – 1, a(i) = (ai,0, ai,1, . . . , ai,n–1), i = 1, 2, . . . , 2k + 1.

φk(a0, a1, . . . , an–1) =
(
a(1)A, a(2)A, . . . , a(2k+1)A

)
,

σ (a0, a1, . . . , an–1) = (an–1, a0, . . . , an–2).

If we apply φk , we can have

φk
(
σ (a0, a1, . . . , an–1)

)
= φk(an–1, a0, . . . , an–2)

=
(
(a1,n–1, a1,0, . . . , a1,n–2)A, (a2,n–1, a2,0, . . . , a2,n–2)A,

· · · , (a2k+1,n–1, a2k+1,0, . . . , a2k+1,n–2)A
)
.

On the other hand,

ψ2k+1
(
φk(a0, a1, . . . , an–1)

)
= ψ2k+1

(
a(1)A, a(2)A, . . . , a(2k+1)A

)

=
(
σ
(
a(1)A

)
,σ

(
a(2)A

)
, . . . ,σ

(
a(2k+1)A

))

=
(
(a1,n–1, a1,0, . . . , a1,n–2)A,

(a2,n–1, a2,0, . . . , a2,n–2)A,

· · · , (a2k+1,n–1, a2k+1,0, . . . , a2k+1,n–2)A
)

= φk
(
σ (a0, a1, . . . , an–1)

)
.

Thus φkσ = ψ2k+1φk . �
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Proposition 2 Let σ and ψ2k+1 be defined as above, then a linear code C of length n over
Sk is a cyclic code if and only if φk(C) is a quasi cyclic code of index 2k + 1 of length (2k + 1)n
over Fq.

Proof If C is a cyclic code of length n over Sk . Then σ (C) = C. We can have φk(σ (C)) =
φk(C).

By Proposition 1,

φk
(
σ (C)

)
= ψ2k+1

(
φk(C)

)
= φk(C).

So, φk(C) is a quasi-cyclic code of index 2k + 1 of length (2k + 1)n over Fq.
Conversely, suppose φk(C) is a quasi-cyclic code of index 2k + 1 of length (2k + 1)n over

Fq, then ψ2k+1(φk(C)) = φk(C).
By Proposition 1, we have ψ2k+1(φk(C)) = φk(σ (C)) = φk(C).
Since φk is a bijective linear map, so σ (C) = C. �

Theorem 1 Let λ1e1 + λ2e2 + · · · + λ2k+1e2k+1 be a unit of Sk . Let C =
⊕2k+1

j=1 ejCj be a linear
code of length n over Sk , then C is a (λ1e1 + λ2e2 + · · · + λ2k+1e2k+1)-constacyclic code over
Sk if and only if Ci is a λi-constacyclic code over Fq, where i = 1, 2, . . . , 2k + 1.

Proof ∀ci = (ci,0, ci,1, . . . , ci,n–1) ∈ Ci, where i = 1, 2, . . . , 2k + 1.

c = e1c1 + e2c2 + · · · + e2k+1c2k+1 =

(2k+1∑

i=1

eici,0,
2k+1∑

i=1

eici,1, . . . ,
2k+1∑

i=1

eici,n–1

)

∈ C.

∀λ1e1 +λ2e2 + · · ·+λ2k+1e2k+1 ∈ Sk , it’s easy to know that λ1e1 +λ2e2 + · · ·+λ2k+1e2k+1 ∈ Sk

is a unit if and only if λi �= 0, that is, λi is a unit over Fq, where i = 1, 2, . . . , 2k + 1.
If Ci is a λi-constacyclic code over Fq, i = 1, 2, . . . , 2k + 1, then

σλi (ci) = σλi (ci,0, ci,1, . . . , ci,n–1) = (λici,n–1, ci,0, . . . , ci,n–2) ∈ Ci,

and

σλ1e1+λ2e2+···+λ2k+1e2k+1 (c)

=

(

(λ1e1 + λ2e2 + · · · + λ2k+1e2k+1)
2k+1∑

i=1

eici,n–1,
2k+1∑

i=1

eici,0, . . . ,
2k+1∑

i=1

eici,n–2

)

= e1σλ1 (c1) + e2σλ2 (c2) + · · · + e2k+1σλ2k+1 (c2k+1) ∈ C.

So C is a (λ1e1 + λ2e2 + · · · + λ2k+1e2k+1)-constacyclic code over Sk .
Conversely, if C is a (λ1e1 + λ2e2 + · · · + λ2k+1e2k+1)-constacyclic code over Sk , we have

σλ1e1+λ2e2+···+λ2k+1e2k+1 (c) = e1σλ1 (c1) + e2σλ2 (c2) + · · · + e2k+1σλ2k+1 (c2k+1) ∈ C.

So σλi (ci) ∈ Ci, Ci is a λi-constacyclic code over Fq, i = 1, 2, . . . , 2k + 1. �
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Theorem 2 Let C =
⊕2k+1

j=1 ejCj be a (λ1e1 + λ2e2 + · · · + λ2k+1e2k+1)-constacyclic code of
length n over Sk , then C = 〈e1g1(x) + e2g2(x) + · · · + e2k+1g2k+1(x)〉, where gi is the generator
polynomial of Ci, i = 1, 2, . . . , 2k + 1.

Proof Let C =
⊕2k+1

j=1 ejCj be a (λ1e1 + λ2e2 + · · · + λ2k+1e2k+1)-constacyclic n over Sk , by
Theorem 1, we get that Ci is a λi-constacyclic code over Fq, i = 1, 2, . . . , 2k + 1.

Because the generator polynomial of Ci is gi(x), i = 1, 2, . . . , 2k + 1. Then

C =
〈
e1g1(x), e2g2(x), . . . , e2k+1g2k+1(x)

〉
.

Let C′ = 〈e1g1(x) + e2g2(x) + · · · + e2k+1g2k+1(x)〉. So C′ ⊆ C.
Because ei[e1g1(x) + e2g2(x) + · · · + e2k+1g2k+1(x)] = eigi(x), i = 1, 2, . . . , 2k + 1. So C ⊆ C′.
So, we have C = C′, and the generator polynomial of C is

g(x) = e1g1(x) + e2g2(x) + · · · + e2k+1g2k+1(x).

Because gi(x) is the generator polynomial of Ci, gi divides xn – λi, i = 1, 2, . . . , 2k + 1. Let
gi(x)fi(x) = xn – λi, i = 1, 2, . . . , 2k + 1.

Then

[
e1g1(x) + e2g2(x) + · · · + e2k g2k+1(x)

][
e1f1(x) + e2f2(x) + · · · + e2k+1f2k+1(x)

]

= λ1e1 + λ2e2 + · · · + λ2k+1e2k+1.

So

e1g1(x) + e2g2(x) + · · · + e2k+1g2k+1(x) | xn – (λ1e1 + λ2e2 + · · · + λ2k+1e2k+1). �

Theorem 3 Let C =
⊕2k+1

j=1 ejCj be a linear code of length n over Sk , let C⊥
j be the dual code

of Cj, then C⊥ =
∑2k+1

j=1 ejC⊥
j , where j = 1, 2, . . . , 2k + 1.

Proof Let C̃ =
⊕2k+1

j=1 ejC⊥
j , ∀x =

∑2k+1
j=1 ejxj ∈ C, ∀x̃ =

∑2k+1
j=1 ejx̃j ∈ C̃, where xj ∈ Cj, x̃j ∈ C⊥

j .
Since xjx̃j = 0, it follows that x · x̃ =

∑2k+1
j=1 (xjx̃j)ej = 0.

So, C̃ ⊆ C⊥.
Since |C||C⊥| = |Sk|n, we have

|C̃| =
2k+1∏

j=1

∣
∣C⊥

j
∣
∣ =

2k+1∏

j=1

qn

|Cj| =
|Sk|n
|C| =

∣
∣C⊥∣

∣.

So

C⊥ = C̃. �

Theorem 4 Let C =
⊕2k+1

j=1 ejCj be a (λ1e1 + λ2e2 + · · · + λ2k+1e2k+1)-constacyclic code of
length n over Sk , then

C⊥ =
〈
e1f ∗

1 (x) + e2f ∗
2 (x) + · · · + e2k+1f ∗

2k+1(x)
〉
,
∣
∣C⊥∣

∣ = q(
∑2k+1

i=1 deg(gi)),
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f ∗
i (x) is the reciprocal polynomial of fi(x) = (xn – λi)/gi(x) which is defined as f ∗

i (x) =
xdeg(fi)fi(x–1), where gi is the generator polynomial of Ci, i = 1, 2, . . . , 2k + 1.

Proof Let Ci = 〈gi(x)〉 be a λi-constacyclic code of length n over Fq, i = 1, 2, . . . , 2k + 1. ∀x =
(x0, x1, . . . , xn–1) ∈ C⊥

i , ∀y = (y0, y1, . . . , yn–1) ∈ Ci, then σ n–1
λi

(y) = (λiy1,λiy2, . . . ,λiyn–1, y0) ∈
Ci, and

0 = x · σ n–1
λi

(y) = λix0y1 + λix1y2 + · · · + λixn–2yn–1 + xn–1y0

= λi
(
x0y1 + x1y2 + · · · + xn–2yn–1 + λ–1

i xn–1y0
)

= λiσλ–1
i

(x) · y.

So, σλ–1
i

(x) ∈ C⊥
i , C⊥

i is a λ–1
i -constacyclic code over Fq.

Let C̃i = 〈f ∗
i (x)〉,

f ∗
i (x)g∗

i (x) = xdeg(fi)fi
(
x–1)xdeg(gi)gi

(
x–1)

= xdeg(fi)
(
x–n – λi

)
/gi

(
x–1)xdeg(gi)gi

(
x–1)

= 1 – xnλi = –λi
(
xn – λ–1

i
)

we have f ∗
i (x) | (xn – λ–1

i ), so C̃i ⊆ C⊥
i .

Because |C̃i| = qn–deg f ∗
i = qdeg gi = qn

|Ci| = |C⊥
i |, we have C⊥

i = C̃i = 〈f ∗
i (x)〉, i = 1, 2, . . . , 2k + 1.

By Theorem 3, C⊥ =
∑2k+1

j=1 ejC⊥
j , we have |C⊥| =

∏2k+1
j=1 |C⊥

j | = q(
∑2k+1

i=1 deg(gi)), and we can
get the form of C⊥ is

C⊥ =
〈
e1f ∗

1 (x), e2f ∗
2 (x), . . . , e2k+1f ∗

2k+1(x)
〉
.

Let C̃′ = 〈e1f ∗
1 (x) + e2f ∗

2 (x) + · · · + e2k+1f ∗
2k+1(x)〉. Then C̃′ ⊆ C⊥.

Because

ei
[
e1f ∗

1 (x), e2f ∗
2 (x), . . . , e2k+1f ∗

2k+1(x)
]

= eif ∗
i (x), i = 1, 2, . . . , 2k + 1.

So C⊥ ⊆ C̃′.
We have

C⊥ = C̃′ =
〈
e1f ∗

1 (x) + e2f ∗
2 (x) + · · · + e2k+1f ∗

2k+1(x)
〉
. �

5 Quantum codes from constacyclic codes over Sk

Theorem 5 Let C be a linear code of length n over Sk , then

φk(C)⊥ = φk
(
C⊥)

, ϕk(C)⊥ = ϕk
(
C⊥)

.

Proof Let a = (a0, a1, . . . , an–1) ∈ C, b = (b0, b1, . . . , bn–1) ∈ C⊥, where aj = a1,je1 + a2,je2 +
· · · + a2k+1,je2k+1, bj = b1,je1 + b2,je2 + · · · + b2k+1,je2k+1 ∈ Sk , j = 0, 1, 2, . . . , n – 1, a(i) =
(ai,0, ai,1, . . . , ai,n–1), b(i) = (bi,0, bi,1, . . . , bi,n–1), i = 1, 2, . . . , 2k + 1.
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Then

a · b =
n–1∑

j=0

ajbj =
n–1∑

j=0

2k+1∑

i=1

ai,jbi,jei =
2k+1∑

i=1

a(i)b(i)T ei = 0.

So

a(i)b(i)T = 0, i = 1, 2, . . . , 2k + 1.

Since

φk(a) =
(
a(1)A, a(2)A, . . . , a(2k+1)A

)
, φk(b) =

(
b(1)A, b(2)A, . . . , b(2k+1)A

)
.

It follows that

φk(a) · φk(b) = φk(a)φk(b)T

=
2k+1∑

i=1

a(i)AAT b(i)T =
2k+1∑

i=1

a(i)λEnb(i)T

= λ

2k+1∑

i=1

a(i)b(i)T = 0.

So we have

φk
(
C⊥) ⊆ φk(C)⊥.

As φk is a bijection, and

|C| =
∣
∣φk(C)

∣
∣.

Then

∣
∣φk

(
C⊥)∣

∣ =
q(2k+1)n

|C| =
q(2k+1)n

|φk(C)| =
∣
∣φk(C)⊥

∣
∣.

So

φk(C)⊥ = φk
(
C⊥)

.

Let

c = (c1, c2, . . . , cn) ∈ C, d = (d1, d2, . . . , dn) ∈ C⊥,

then

ϕk(c) = (c1B, c2B, . . . , cnB), ϕk(d) = (d1B, d2B, . . . , dnB).



Kong and Zheng EPJ Quantum Technology            (2023) 10:3 Page 11 of 16

The vector forms of ci and di are respectively

ci = (ci1, ci2, . . . , ci(2k+1)), di = (di1, di2, . . . , di(2k+1)), i = 1, 2, . . . , n.

Then

ϕk(c) · ϕk(d) = ϕk(c)ϕk(d)T

=
n∑

i=1

ciBBT dT
i =

n∑

i=1

ciλE2k+1dT
i = λ

n∑

i=1

cidT
i = 0.

So we have

ϕk
(
C⊥) ⊆ ϕk(C)⊥.

As ϕk is a bijection, and

|C| =
∣
∣ϕk(C)

∣
∣.

Then

∣
∣ϕk

(
C⊥)∣

∣ =
q(2k+1)n

|C| =
q(2k+1)n

|ϕk(C)| =
∣
∣ϕk(C)⊥

∣
∣.

Therefore,

ϕk(C)⊥ = ϕk
(
C⊥)

. �

Theorem 6 Let C =
⊕2k+1

j=1 ejCj be a linear code of length n over Sk , then C is a self-
orthogonal code over Sk if and only if Cj is a self-orthogonal code over Fq, if C is a self-
orthogonal code over Sk , then φk(C) and ϕk(C) are self-orthogonal codes over Fq, where
j = 1, 2, . . . , 2k + 1.

Proof By using Theorem 1, we have C ⊆ C⊥ if and only if Cj ⊆ C⊥
j , so C is a self-orthogonal

code over Sk if and only if Cj is a self-orthogonal code over Fq, where j = 1, 2, . . . , 2k + 1.
Let C be a self-orthogonal code, ∀a = (a0, a1, . . . , an–1), b = (b0, b1, . . . , bn–1) ∈ C, aj =

a1,je1 + a2,je2 + · · · + a2k+1,je2k+1, bj = b1,je1 + b2,je2 + · · · + b2k+1,je2k+1 ∈ Sk , j = 0, 1, 2, . . . , n – 1,
a(i) = (ai,0, ai,1, . . . , ai,n–1), b(i) = (bi,0, bi,1, . . . , bi,n–1), i = 1, 2, . . . , 2k + 1.

Then

a · b =
n–1∑

j=0

ajbj =
n–1∑

j=0

2k+1∑

i=1

ai,jbi,jei =
2k+1∑

i=1

a(i)b(i)T ei = 0.

So,

a(i)b(i)T = 0, i = 1, 2, . . . , 2k + 1.
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It follows that

φk(a) · φk(b) = φk(a)φk(b)T

=
2k+1∑

i=1

a(i)AAT b(i)T =
2k+1∑

i=1

a(i)λEnb(i)T = λ

2k+1∑

i=1

a(i)b(i)T = 0.

So φk(C) is a self-orthogonal code over Fq.
Let c = (c1, c2, . . . , cn) ∈ C, d = (d1, d2, . . . , dn) ∈ C, then

ϕk(c) = (c1B, c2B, . . . , cnB), ϕk(d) = (d1B, d2B, . . . , dnB).

ci = ci,1e1 + ci,2e2 + · · · + ci,2k+1e2k+1 ∈ Sk ,

di = di,1e1 + di,2e2 + · · · + di,2k+1e2k+1 ∈ Sk ,

where i = 1, 2, . . . , n.
The vector forms of ci and di are respectively

ci = (ci,1, ci,2, . . . , ci,2k+1), di = (di,1, di,2, . . . , di,2k+1), i = 1, 2, . . . , n.

Since C is a self-orthogonal code,

c · d =
n∑

j=1

cjdj =
n∑

i=1

2k+1∑

j=1

ci,jdi,jei =
2k+1∑

i=1

cidi
T ei = 0.

So,

cidi
T = 0, i = 1, 2, . . . , 2k + 1.

Then,

ϕk(c) · ϕk(d) = ϕk(c)ϕk(d)T

=
n∑

i=1

ciBBT dT
i =

n∑

i=1

ciλE2k+1dT
i = λ

n∑

i=1

cidT
i = 0.

So ϕk(C) is a self-orthogonal code over Fq. �

Lemma 5 Let C be a constacyclic code over Fq, the generator polynomial is g(x). Then, C
contains its dual code if and only if xn – λ ≡ 0(mod g(x)g∗(x)), where g∗(x) is the reciprocal
polynomial of g(x), λ = ±1.

Proof Let C⊥ = 〈f ∗(x)〉 be the dual code of C, where f (x) = (xn –λ)/g(x), λ = ±1. C contains
its dual code if and only if there exists h(x) ∈ Fq[x], such that f ∗(x) = g(x)h(x) if and only if
g∗(x)g(x) = λ(xn–λ–1)

f ∗(x) g(x) = λ(xn–λ–1)
g(x)h(x) g(x) = λ(xn–λ)

h(x) if and only if (xn – λ) = λ–1g∗(x)g(x)h(x) ≡
0(modg(x)g∗(x)). �



Kong and Zheng EPJ Quantum Technology            (2023) 10:3 Page 13 of 16

Theorem 7 (CSS construction, [20]) Let C1 = [n, k1, d1]q and C2 = [n, k2, d2]q be linear
codes over Fq, with C⊥

2 ⊆ C⊥
1 . Let d = min (d1, d2), then there exists a quantum error-

correcting code C with parameters C = [[n, k1 + k2 – n,≥ d]]q. In particular, if C⊥
1 ⊆ C1,

then there exists a quantum error-correcting code C = [[n, 2k1 – n,≥ d1]]q.

Theorem 8 Let C =
⊕2k+1

j=1 ejCj be a (λ1e1 + λ2e2 + · · · + λ2k+1e2k+1)-constacyclic code of
length n over Sk , where (λ1e1 +λ2e2 + · · ·+λ2k+1e2k+1) is a unit in Sk . Then C⊥ ⊆ C if and only
if xn – λi ≡ 0(modgi(x)g̃i(x)), where gi is the generator polynomial of Ci, g̃i(x) = 1

gi(0) g∗
i (x) =

1
gi(0) xdeggi gi(x–1), i = 1, 2, . . . , 2k + 1.

Proof If xn – λi ≡ 0(mod gi(x)g̃i(x)), by Lemma 5, we have C⊥
i ⊆ Ci, i = 1, 2, . . . , 2k + 1, then

eiC⊥
i ⊆ eiCi, so C⊥ =

⊕2k+1
j=1 ejC⊥

j ⊆ ⊕2k+1
j=1 ejCj = C.

Conversely, let C⊥ ⊆ C, then C⊥ =
⊕2k+1

j=1 ejC⊥
j ⊆ ⊕2k+1

j=1 ejCj = C, we have C⊥
i ⊆ Ci, by

Lemma 5, we have xn – λi ≡ 0(modgi(x)g̃i(x)) i = 1, 2, . . . , 2k + 1. �

By using Lemma 5 and Theorem 8, we can have the following corollary.

Corollary 1 Let C =
⊕2k+1

j=1 ejCj be a (λ1e1 + λ2e2 + · · · + λ2k+1e2k+1)-constacyclic code of
length n over Sk , where (λ1e1 +λ2e2 + · · ·+λ2k+1e2k+1) is a unit in Sk . Then C⊥ ⊆ C if and only
if C⊥

i ⊆ Ci, where Ci is a λi-constacyclic code of length n over Fq, λi = ±1, i = 1, 2, . . . , 2k + 1.

By using Theorem 7 and Theorem 8 we can have the following theorems.

Theorem 9 Let C =
⊕2k+1

j=1 ejCj be a (λ1e1 + λ2e2 + · · · + λ2k+1e2k+1)-constacyclic code of
length n over Sk . Let Ci be a λi-constacyclic code of length n overFq, C⊥

i ⊆ Ci, where λi = ±1,
i = 1, 2, . . . , 2k + 1, then C⊥ ⊆ C and there exists a quantum error-correcting code with
parameters [[(2k + 1)n, 2l – (2k + 1)n,≥ d]]q, where d is the minimum Gray weight of code
C, and l is the dimension of the linear code φk(C).

Theorem 10 Let C =
⊕2k+1

j=1 ejCj be a (λ1e1 + λ2e2 + · · · + λ2k+1e2k+1)-constacyclic code of
length n over Sk . Let Ci be a λi-constacyclic code of length n overFq, C⊥

i ⊆ Ci, where λi = ±1,
i = 1, 2, . . . , 2k + 1, then C⊥ ⊆ C and there exists a quantum error-correcting code with
parameters [[(2k + 1)n, 2l – (2k + 1)n,≥ d]]q, where d is the minimum Gray weight of code
C, and l is the dimension of the linear code ϕk(C).

Example 1 Let

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 –2 2 0 0
–2 1 2 0 0
2 2 1 0 0
0 0 0 3 0
0 0 0 0 3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

S2 = F5[u1, u2]/〈u3
1 = u1, u3

2 = u2, u1u2 = u2u1 = 0〉, e1 = u2
1+u1

2 , e2 = u2
1–u1

2 , e3 = u2
2+u2

2 , e4 =
u2

2–u2
2 , e5 = 1 – u2

1 – u2
2, when n = 30,

x30 + 1 = (x + 2)5(x + 3)5(x2 + 2x + 4)5(x2 + 3x + 4)5,

x30 – 1 = (x + 1)5(x + 4)5(x2 + x + 1)5(x2 + 4x + 1)5 in F5(x).
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Let C be a (1 – 2u2
2)-constacyclic code of length 30 over S2 with generator polynomial

e1g1(x) + e2g2(x) + e3g3(x) + e4g4(x) + e5g5(x), where g1 = x + 1, g2 = x + 4, g3 = x + 2, g4 = x + 3,
g5 = x + 1, then xn – 1 ≡ 0(modgi(x)g̃i(x)), when i = 1, 2, 5, xn + 1 ≡ 0(modgi(x)g̃i(x)), when
i = 3, 4. By using Theorem 8, we have C⊥ ⊆ C and φ2(C) is a linear code over F5 with
parameters [150, 145, 2]. By Theorem 9, we know that there is a quantum error correcting
code with parameters [[150, 140,≥ 2]]5.

Example 2 Let

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 0
1 1 –1 –1 0
1 –1 1 –1 0
1 –1 –1 1 0
0 0 0 0 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

S2 = F7[u1, u2]/〈u3
1 = u1, u3

2 = u2, u1u2 = u2u1 = 0〉, e1 = u2
1+u1

2 , e2 = u2
1–u1

2 , e3 = u2
2+u2

2 , e4 =
u2

2–u2
2 , e5 = 1 – u2

1 – u2
2, when n = 15,

x15 – 1 = (x + 3)(x + 5)(x + 6)(x4 + x3 + x2 + x + 1)

× (x4 + 2x3 + 4x2 + x + 2)(x4 + 4x3 + 2x2 + x + 4),

x15 + 1 = (x + 1)(x + 2)(x + 4)(x4 + 3x3 + 2x2 + 6x + 4)

× (x4 + 5x3 + 4x2 + 6x + 2)(x4 + 6x3 + x2 + 6x + 1).

Let C be a (1–2u2
1 –u2

2)-constacyclic code of length 15 over S2 with generator polynomial
e1g1(x) + e2g2(x) + e3g3(x) + e4g4(x) + e5g5(x), where g1 = x4 + 3x3 + 2x2 + 6x + 4, g2 = x4 + 5x3 +
4x2 + 6x + 2, g3 = g4 = x4 + 6x3 + x2 + 6x + 1, g5 = x4 + x3 + x2 + x + 1. By using Theorem 8, we
have C⊥ ⊆ C and ϕ2(C) is a linear code over F7 with parameters [85, 65, 4]. By Theorem 10,
we know that there is a quantum error correcting code with parameters [[85, 45,≥ 4]]7.

Example 3 Let

A =

⎡

⎢
⎣

1 0 1
1 0 –1
0 1 0

⎤

⎥
⎦ ,

n = 3 and S1 = F7[u1]/〈u3
1 = u1〉, e1 = u2

1+u1
2 , e2 = u2

1–u1
2 , e3 = 1–u2

1, x3 +1 = (x+1)(x+2)(x+4),
x3 – 1 = (x + 3)(x + 5)(x + 6).

Let C be a (2u2
1 – 1)-constacyclic code of length 3 over S1 with generator polynomial

e1g1(x) + e2g2(x) + e3g3(x), where g1 = x + 3, g2 = x + 5, g3 = x + 4. By Theorem 8, we have
C⊥ ⊆ C, and φ1(C) is a linear code over F7 with parameters [9, 6, 2]. By Theorem 9, we
know that there is a quantum error correcting code with parameters [[9, 3,≥ 2]]7.

In Table 1, we provide some new quantum codes [[n, l, d]]q (in the sixth column) and
compare the constructed codes [[n′, l′, d′]]q (in the seventh column) better (by means of
larger code rate or larger distance) than the existing references [13, 16, 17]. Further, the
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Table 1 New Quantum codes over Sk

n k (λ1, . . . ,λ2k+1) 〈g1(x), . . . ,g2k+1(x)〉 ϕk(C) [[n, l,d]]q [[n′ , l′ ,d′]]q
8 1 (1, 1, –1) (112, 112, 1022) [24, 16, 3] [[24, 8,≥ 3]]3 [[24, 8, 2]]3 [13]
24 1 (1, 1, 1) (1101, 11, 11) [72, 67, 3] [[72, 62,≥ 3]]3 [[72, 48, 2]]3 [13]
26 1 (1, 1, 1) (101102, 121, 121) [78, 66, 4] [[78, 54,≥ 4]]3 [[78, 48, 4]]3 [17]
12 1 (1, 1, 1) (1111, 11, 11) [36, 31, 4] [[36, 26,≥ 4]]3 [[36, 24, 3]]3 [17]
28 1 (1, 1, 1) (1111, 11, 11) [84, 79, 4] [[84, 75,≥ 4]]7 [[84, 72, 3]]7 [17]
16 1 (1, 1, 1) (1ω2ω3ω5, 1ω2, 1ω2) [48, 43, 3] [[48, 38,≥ 3]]9 [[48, 30, 3]]9 [16]

first column represents the length n, the second column is parameter k for Sk , the third
column gives the value of units (λ1, . . . ,λ2k+1), the fourth column gives the generator poly-
nomials 〈g1(x), . . . , g2k+1(x)〉, where gi(x) = anxn + an–1xn–1 + · · · + a1x + a0 is denoted by
anan–1 · · ·a1a0, e.g., 112 represents the polynomial x2 + x + 2, the fifth column gives pa-
rameters of ϕk(C).

6 Conclusion
In this paper, we study the structure of constacyclic codes over the non-chain rings Sk =
Fq[u1, u2, . . . , uk]/〈u3

i = ui, uiuj = ujui = 0〉, and apply the CSS construction on Gray images
of dual containing constacyclic codes to obtain some new quantum codes improving the
existing codes that appeared in some recent references.

Acknowledgements
The authors would like to thank the referees and the editor for their careful reading the paper and valuable comments
and suggestions, which improved the presentation of this manuscript.

Funding
This work was supported by the Key Technologies Research and Development Program of Henan Province
(No. 212102210573) and Zhengzhou Special Fund for Basic Research and applied basic research (No. ZZSZX202111).

Availability of data and materials
All data generated or analysed during this study are included in this published article.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
We agree to publication in the Journal.

Competing interests
The authors declare no competing interests.

Author contributions
All authors have read and agreed to the published version of the manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 June 2022 Accepted: 25 January 2023

References
1. Calderbank AR, Rains EM, Shor PM et al. Quantum error correction via codes over GF(4). IEEE Trans Inf Theory.

1998;44:1369–87. https://doi.org/10.1109/18.681315.
2. Chen B, Dinh HQ, Liu H. Repeated-root constacyclic codes of length 2lmpn . Finite Fields Appl. 2015;33:137–59.

https://doi.org/10.1016/j.ffa.2014.11.006.
3. Chen B, Liu H. Constructions of cyclic constant dimension codes. Des Codes Cryptogr. 2018;86:1267–79.

https://doi.org/10.1007/s10623-017-0394-9.
4. Li J, Gao J, Fu FW et al. FqR-Linear skew constacyclic codes and their application of constructing quantum codes.

Quantum Inf Process. 2020;19:193. https://doi.org/10.1007/s11128-020-02700-x.

https://doi.org/10.1109/18.681315
https://doi.org/10.1016/j.ffa.2014.11.006
https://doi.org/10.1007/s10623-017-0394-9
https://doi.org/10.1007/s11128-020-02700-x


Kong and Zheng EPJ Quantum Technology            (2023) 10:3 Page 16 of 16

5. Dinh HQ, Kewat PK, Kushwaha S et al. Constacyclic codes of length ps over Fpm /〈u2, v2,uv – vu〉. Discrete Math.
2020;343:111890. https://doi.org/10.1016/j.disc.2020.111890.

6. Kumar R, Bhaintwal M. A class of constacyclic codes and skew constacyclic codes over Z2s + uZ2s and their gray
images. J Appl Math Comput. 2021;66:111–28. https://doi.org/10.1007/s12190-020-01425-5.

7. Zheng X, Kong B. Cyclic codes and λ1 + λ2u + λ3v + λ4uv-constacyclic codes over Fp + uFp + vFp + uvFp . Appl Math
Comput. 2017;306:86–91. https://doi.org/10.1016/j.amc.2017.02.017.

8. Zheng X, Kong B. Constacyclic codes over Fpm [u1,u2, . . . ,uk ]/〈u2i = ui ,uiuj = ujui〉. Open Math. 2018;16:490–7.
https://doi.org/10.1515/math-2018-0045.

9. Kong B, Zheng X, Ma H. The depth spectrums of constacyclic codes over finite chain rings. Discrete Math.
2015;338:256–61. https://doi.org/10.1016/j.disc.2014.09.013.

10. Liu HW, Liu JG. On σ -self-orthogonal constacyclic codes over Fpm + uFpm . Adv Math Commun. 2022;16:643–65.
https://doi.org/10.3934/amc.2020127.

11. Dertli A, Cengellenmis Y, Eren S. On quantum codes obtained from cyclic codes over A2 . Int J Quantum Inf.
2015;13:1550031. https://doi.org/10.1142/S0219749915500318.

12. Gao Y, Gao J, Fu FW. Quantum codes from cyclic codes over the ring Fq + v1Fq + · · · + vrFq . Appl Algebra Eng
Commun Comput. 2019;30:161–74. https://doi.org/10.1007/s00200-018-0366-y.

13. Islam H, Prakash O. Quantum codes from the cyclic codes over
Fp[u, v,w]/〈u2 – 1, v2 – 1,w2 – 1,uv – vu, vw –wv,wu – uw〉. J Appl Math Comput. 2019;60:625–35.
https://doi.org/10.1007/s12190-018-01230-1.

14. Rani S, Verma RK, Prakash O. Quantum codes from repeated-root cyclic and negacyclic codes of length 4ps over FPm .
Int J Theor Phys. 2021;60:1299–327. https://doi.org/10.1007/s10773-021-04757-5.

15. Wang Y, Kai X, Sun Z et al. Quantum codes from Hermitian dual-containing constacyclic codes over Fq2 + vFq2 .
Quantum Inf Process. 2021;20:122. https://doi.org/10.1007/s11128-021-03052-w.

16. Prakash O, Islam H, Patel S et al. New quantum codes from skew constacyclic codes over a class of non-chain rings
Re,q . Int J Theor Phys. 2021;60:3334–52. https://doi.org/10.1007/s10773-021-04910-0.

17. Ashra M, Khan N, Mohammad G. Quantum codes from cyclic codes over the mixed alphabet structure. Quantum Inf
Process. 2022;21:180. https://doi.org/10.1007/s11128-022-03491-z.

18. Dertli A, Cengellenmis Y. Quantum codes obtained from some constacyclic codes over a family of finite rings
FP + uFp + vFp . Math Comput Sci. 2020;14:437–41. https://doi.org/10.1007/s11786-019-00426-3.

19. Islam H, Prakash O. New quantum codes from constacyclic and additive constacyclic codes. Quantum Inf Process.
2020;19:319. https://doi.org/10.1007/s11128-020-02825-z.

20. Ketkar A, Klappenecker A, Kumar S et al. Nonbinary Stabilizer Codes Over Finite Fields. IEEE Trans Inf Theory.
2006;52:4892–914. https://doi.org/10.1109/TIT.2006.883612.

https://doi.org/10.1016/j.disc.2020.111890
https://doi.org/10.1007/s12190-020-01425-5
https://doi.org/10.1016/j.amc.2017.02.017
https://doi.org/10.1515/math-2018-0045
https://doi.org/10.1016/j.disc.2014.09.013
https://doi.org/10.3934/amc.2020127
https://doi.org/10.1142/S0219749915500318
https://doi.org/10.1007/s00200-018-0366-y
https://doi.org/10.1007/s12190-018-01230-1
https://doi.org/10.1007/s10773-021-04757-5
https://doi.org/10.1007/s11128-021-03052-w
https://doi.org/10.1007/s10773-021-04910-0
https://doi.org/10.1007/s11128-022-03491-z
https://doi.org/10.1007/s11786-019-00426-3
https://doi.org/10.1007/s11128-020-02825-z
https://doi.org/10.1109/TIT.2006.883612

	Quantum codes from constacyclic codes over Sk
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Gray maps
	Constacyclic codes over Sk
	Quantum codes from constacyclic codes over Sk
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author contributions
	Publisher's Note
	References


