
Yokotera and Yamamoto EPJ Quantum Technology  (2016) 3:15 
DOI 10.1140/epjqt/s40507-016-0053-5

R E S E A R C H Open Access

Geometric control theory for quantum
back-action evasion
Yu Yokotera* and Naoki Yamamoto

*Correspondence:
y-yokotera@z6.keio.jp
Department of Applied Physics and
Physico-Informatics, Keio University,
Hiyoshi 3-14-1, Kohoku, Yokohama,
223-8522, Japan

Abstract
Engineering a sensor system for detecting an extremely tiny signal such as the
gravitational-wave force is a very important subject in quantum physics. A major
obstacle to this goal is that, in a simple detection setup, the measurement noise is
lower bounded by the so-called standard quantum limit (SQL), which is originated
from the intrinsic mechanical back-action noise. Hence, the sensor system has to be
carefully engineered so that it evades the back-action noise and eventually beats the
SQL. In this paper, based on the well-developed geometric control theory for classical
disturbance decoupling problem, we provide a general method for designing an
auxiliary (coherent feedback or direct interaction) controller for the sensor system to
achieve the above-mentioned goal. This general theory is applied to a typical
opto-mechanical sensor system. Also, we demonstrate a controller design for a
practical situation where several experimental imperfections are present.

Keywords: back-action evasion; geometric control theory; coherent feedback;
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1 Introduction
Detecting a very weak signal which is almost inaccessible within the classical (i.e., non-
quantum) regime is one of the most important subjects in quantum information sci-
ence. A strong motivation to devise such an ultra-precise sensor stems from the field of
gravitational wave detection [–]. In fact, a variety of linear sensors composed of opto-
mechanical oscillators have been proposed [–], and several experimental implementa-
tions of those systems in various scales have been reported [–].

It is well known that in general a linear sensor is subjected to two types of fundamental
noises, i.e., the back-action noise and the shot noise. As a consequence, the measurement
noise is lower bounded by the standard quantum limit (SQL) [, ], which is mainly due
to the presence of back-action noise. Hence, high-precision detection of a weak signal
requires us to devise a sensor that evades the back-action noise and eventually beats the
SQL; i.e., we need to have a sensor achieving back-action evasion (BAE). In fact, many BAE
methods have been developed especially in the field of gravitational wave detection, e.g.,
the variational measurement technique [–] or the quantum locking scheme [–].
Moreover, towards more accurate detection, recently we find some high-level approaches
to design a BAE sensor, based on those specific BAE methods. For instance, Ref. [] pro-
vides a systematic comparison of several BAE methods and gives an optimal solution. Also
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systems and control theoretical methods have been developed to synthesize a BAE sensor
for a specific opto-mechanical system [, ]; in particular, the synthesis is conducted
by connecting an auxiliary system to a given plant system by direct-interaction [] or
coherent feedback [].

Along this research direction, therefore, in this paper we set the goal to develop a general
systems and control theory for engineering a sensor achieving BAE, for both the coherent
feedback and the direct-interaction configurations. The key tool used here is the geomet-
ric control theory [–], which had been developed a long time ago. This is indeed a
beautiful theory providing a variety of controller design methods for various purposes
such as the non-interacting control and the disturbance decoupling problem, but, to our
best knowledge, it has not been applied to problems in quantum physics. Actually in this
paper we first demonstrate that the general synthesis problem of a BAE sensor can be for-
mulated and solved within the framework of geometric control theory, particularly the
above-mentioned disturbance decoupling problem.

This paper is organized as follows. Section  is devoted to some preliminaries including
a review of the geometric control theory, the general model of linear quantum systems,
and the idea of BAE. Then, in Section , we provide the general theory for designing a
coherent feedback controller achieving BAE, and demonstrate an example for an opto-
mechanical system. In Section , we discuss the case of direct interaction scheme, also
based on the geometric control theory. Finally, in Section , for a realistic opto-mechanical
system subjected to a thermal environment (the perfect BAE is impossible in this case),
we provide a convenient method to find an approximated BAE controller and show how
much the designed controller can suppress the noise.

A part of the results in Section . in this paper will appear in Proceedings of the th
IEEE Conference on Decision and Control.

Notation For a matrix A = (aij), A�, A†, and A� represent the transpose, Hermitian conju-
gate, and element-wise complex conjugate of A, respectively; i.e., A� = (aji), A† = (a∗

ji), and
A� = (a∗

ij) = (A†)�. �(a) and �(a) denote the real and imaginary parts of a complex num-
ber a. O and In denote the zero matrix and the n×n identity matrix. Ker A and Im A denote
the kernel and the image of a matrix A, i.e., Ker A = {x|Ax = } and Im A = {y|y = Ax,∀x}.

2 Preliminaries
2.1 Geometric control theory for disturbance decoupling
Let us consider the following classical linear time-invariant system:

dx(t)
dt

= Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), ()

where x(t) ∈ X := R
n is a vector of system variables, u(t) ∈ U := R

m and y(t) ∈ Y := R
l are

vectors of input and output, respectively. A, B, C, and D are real matrices. In the Laplace
domain, the input-output relation is represented by

Y (s) = �(s)U(s), �(s) = C(sI – A)–B + D,

where U(s) and Y (s) are the Laplace transforms of u(t) and y(t), respectively. �(s) is called
the transfer function. In this subsection, we assume D = .
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Now we describe the geometric control theory, for the disturbance decoupling problem
[, ]. The following invariant subspaces play a key role in the theory.

Definition  Let A : X → X be a linear map. Then, a subspace V ⊆ X is said to be
A-invariant, if AV ⊆ V .

Definition  Given a linear map A : X →X and a subspace Im B ⊆X , a subspace V ⊆X
is said to be (A, B)-invariant, if AV ⊆ V ⊕ Im B.

Definition  Given a linear map A : X →X and a subspace Ker C ⊆X , a subspaceV ⊆X
is said to be (C, A)-invariant, if A(V ∩ Ker C) ⊆ V .

Definition  Assume thatV is (C, A)-invariant, V is (A, B)-invariant, andV ⊆ V. Then,
(V,V) is said to be a (C, A, B)-pair.

From Definitions  and , we have the following two lemmas.

Lemma  V ⊆ X is (A, B)-invariant if and only if there exists a matrix F such that F ∈
F (V) := {F : X → U |(A + BF)V ⊆ V}.

Lemma  V ⊆ X is (C, A)-invariant if and only if there exists a matrix G such that G ∈
G(V) := {G : Y →X |(A + GC)V ⊆ V}.

The disturbance decoupling problem is described as follows. The system of interest is
represented, in an extended form of Eq. (), as

dx(t)
dt

= Ax(t) + Bu(t) + Ed(t), y(t) = Cx(t), z(t) = Hx(t),

where d(t) is the disturbance and z(t) is the output to be regulated. E and H are real matri-
ces. The other output y(t) may be used for constructing a feedback controller; see Figure .
The disturbance d(t) can degrade the control performance evaluated on z(t). Thus it is de-
sirable if we can modify the system structure by some means so that eventually d(t) dose
not affect at all on z(t).a This control goal is called the disturbance decoupling. Here we
describe a specific feedback control method to achieve this goal; note that, as shown later,
the direct-interaction method for linear quantum systems can also be described within
this framework. The controller configuration is illustrated in Figure ; that is, the system
modification is carried out by combining an auxiliary system (controller) with the original
system (plant), so that the whole closed-loop system satisfies the disturbance decoupling

Figure 1 General configuration for the disturbance decoupling via
a dynamical feedback controller.
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condition. The controller with variable xK ∈ XK := R
nk is assumed to take the following

form:

dxK (t)
dt

= AK xK (t) + BK y(t), u(t) = CK xK (t) + DK y(t),

where AK : XK → XK , BK : Y → XK , CK : XK → U , and DK : Y → U are real matrices.
Then, the closed-loop system defined in the augmented space XE := X ⊕XK is given by

d
dt

[
x

xK

]
=

[
A + BDK C BCK

BK C AK

][
x

xK

]
+

[
E
O

]
d, z =

[
H O

][ x
xK

]
. ()

The control goal is to design (AK , BK , CK , DK ) so that, in Eq. (), the disturbance signal d(t)
dose not appear in the output z(t): see the endnote in Page . Here, let us define

AE =

[
A + BDK C BCK

BK C AK

]
, ()

B = Im B, C = Ker C, E = Im E, and H = Ker H . Then, the following theorem gives the solv-
ability condition for the disturbance decoupling problem.

Theorem  For the closed-loop system (), the disturbance decoupling problem via the dy-
namical feedback controller has a solution if and only if there exists a (C, A, B)-pair (V,V)
satisfying

E ⊆ V ⊆ V ⊆H. ()

Note that this condition does not depend on the controller matrices to be designed. The
following corollary can be used to check if the solvability condition is satisfied.

Corollary  For the closed-loop system (), the disturbance decoupling problem via the
dynamical feedback controller has a solution if and only if

V∗(C,E) ⊆ V∗(B,H),

where V∗(B,H) is the maximum element of (A, B)-invariant subspaces contained in H,
and V∗(C,E) is the minimum element of (C, A)-invariant subspaces containing E . These
subspaces can be computed by the algorithms given in Appendix A.

Once the solvability condition described above is satisfied, then we can explicitly con-
struct the controller matrices (AK , BK , CK , DK ). The following intersection and projection
subspaces play a key role for this purpose; that is, for a subspace VE ⊆ XE = X ⊕ XK , let
us define

VI :=

{
x ∈X

∣∣∣∣
[

x
O

]
∈ VE

}
, VP :=

{
x ∈X

∣∣∣∣
[

x
xK

]
∈ VE ,∃xK ∈XK

}
.

Then, the following theorem is obtained:



Yokotera and Yamamoto EPJ Quantum Technology  (2016) 3:15 Page 5 of 22

Theorem  Suppose that (V,V) is a (C, A, B)-pair. Then, there exist F ∈ F (V), G ∈
G(V), and DK : Y → U such that Ker F ⊇ V and Im G ⊆ V hold, where F = F – DK C,
G = G – BDK .

Moreover, there exists XK with dimXK = dimV – dimV, and AE has an invariant sub-
space VE ⊆XE such that V = VI and V = VP . Also, (AK , BK , CK ) satisfies

CK N = F, BK = –NG, AK N = N(A + BF + GC), ()

where N : V →XK is a linear map satisfying Ker N = V.

In fact, under the condition given in Theorem , let us define the following augmented
subspace VE ⊆XE :

VE :=

{[
x

Nx

]∣∣∣∣x ∈ V

}
.

Then, V = VI and V = VP hold, and we have

AE

[
x

Nx

]
=

[
A + BDK C BCK

BK C AK

][
x

Nx

]
=

[
(A + BF)x

N(A + BF)x

]
∈ VE ,

implying that VE is actually AE-invariant. Now suppose that Theorem  holds, and let
us take the (C, A, B)-pair (V,V) satisfying Eq. (). Then, together with the above result
(AEVE ⊆ VE), we have Im[E� O]� ⊆ VE ⊆ Ker[H O]. This implies that d(t) must be con-
tained in the unobservable subspace with respect to z(t), and thus the disturbance decou-
pling is realized.

2.2 Linear quantum systems
Here we describe a general linear quantum system composed of n bosonic subsystems.
The jth mode can be modeled as a harmonic oscillator with the canonical conjugate pairs
(or quadratures) q̂j and p̂j satisfying the canonical commutation relation (CCR) q̂jp̂k –
p̂k q̂j = iδjk . Let us define the vector of quadratures as x̂ = [q̂, p̂, . . . , q̂n, p̂n]�. Then, the
CCRs are summarized as

x̂x̂� –
(
x̂x̂�)� = i�n, �n = diag{�, . . . ,�}, � =

[
 

– 

]
.

Note that �n is a n×n block diagonal matrix. The linear quantum system is an open sys-
tem coupled to m environment fields via the interaction Hamiltonian Ĥint = i

∑m
j=(L̂jÂ∗

j –
L̂∗

j Âj), where Âj(t) is the field annihilation operator satisfying Âj(t)Â∗
k(t′) – Â∗

k(t′)Âj(t) =
δjkδ(t – t′). Also L̂j is given by L̂j = c�

j x̂ with cj ∈ C
n. In addition, the system is driven by

the Hamiltonian Ĥ = x̂�Rx̂/ with R = R� ∈R
n×n. Then, the Heisenberg equation of x̂ is

given by

dx̂(t)
dt

= Ax̂(t) +
m∑
j=

BjŴj(t), ()
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where Ŵj(t) is defined by

Ŵj =

[
Q̂j

P̂j

]
=

[
(Âj + Â∗

j )/
√


(Âj – Â∗

j )/
√

i

]
.

The matrices are given by A = �n(R +
∑m

j= C�
j �Cj/) and Bj = �nC�

j � with Cj =√
[�(cj),�(cj)]� ∈ R

×n. Also, the instantaneous change of the field operator Ŵj(t) via
the system-field coupling is given by

Ŵ out
j (t) = Cjx̂(t) + Ŵj(t). ()

To summarize, the linear quantum system is characterized by the dynamics () and the
output (), which are exactly of the same form as those in Eq. () (l = m in this case). How-
ever note that the system matrices have to satisfy the above-described special structure,
which is equivalently converted to the following physical realizability condition []:

A�n + �nA� +
m∑
j=

Bj�B�
j = O, Bj = �nC�

j �. ()

2.3 Weak signal sensing, SQL, and BAE
The opto-mechanical oscillator illustrated in Figure  is a linear quantum system, which
serves as a sensor for a very weak signal. Let q̂ and p̂ be the oscillator’s position and
momentum operators, and â = (q̂ + ip̂)/

√
 represents the annihilation operator of the

cavity mode. The system Hamiltonian is given by Ĥ = ωm(q̂
 + p̂

 )/ – gq̂q̂; that is, the
oscillator’s free evolution with resonant frequency ωm plus the linearized radiation pres-
sure interaction between the oscillator and the cavity field with coupling strength g . The
system couples to an external probe field (thus m = ) via the coupling operator L̂ =

√
κâ,

with κ the coupling constant between the cavity and probe fields. The corresponding ma-
trix R and vector c are then given by

R =

⎡
⎢⎢⎢⎣

ωm  –g 
 ωm  

–g   
   

⎤
⎥⎥⎥⎦ , c =

√
κ



⎡
⎢⎢⎢⎣




i

⎤
⎥⎥⎥⎦ .

The oscillator is driven by an unknown force f̂ (t) with coupling constant γ ; f̂ (t) is the very
weak signal we would like to detect. Then the vector of system variables x̂ = [q̂, p̂, q̂, p̂]�

Figure 2 Opto-mechanical system for weak signal sensing.
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satisfies

dx̂
dt

= Ax̂ + BŴ + bf̂ , Ŵ out
 = Cx̂ + Ŵ,

where

A =

⎡
⎢⎢⎢⎣

 ωm  
–ωm  g 

  –κ/ 
g   –κ/

⎤
⎥⎥⎥⎦ , B = –C�

 = –

⎡
⎢⎢⎢⎣

 
 √
κ 


√

κ

⎤
⎥⎥⎥⎦ ,

b =
√

γ

⎡
⎢⎢⎢⎣






⎤
⎥⎥⎥⎦ , Ŵ = [Q̂, P̂]�, Ŵ out

 =
[
Q̂out

 , P̂out

]�.

()

Note that we are in the rotating frame at the frequency of the probe field. These equations
indicate that the information about f̂ can be extracted by measuring P̂out

 by a homodyne
detector. Actually the measurement output in the Laplace domain is given by

P̂out
 (s) = �f (s)f̂ (s) + �Q(s)Q̂(s) + �P(s)P̂(s), ()

where �f , �Q, and �P are transfer functions given by

�f (s) =
gωm

√
γ κ

(s + ω
m)(s + κ/)

, �Q(s) = –
gωmκ

(s + ω
m)(s + κ/) , �P(s) =

s – κ/
s + κ/

.

Thus, P̂out
 certainly contains f̂ . Note however that it is subjected to two noises. The first

one, Q̂, is the back-action noise, which is due to the interaction between the oscillator
and the cavity. The second one, P̂, is the shot noise, which inevitably appears. Now, the
normalized output is given by

y(s) =
P̂out

 (s)
�f (s)

= f̂ (s) +
�Q(s)
�f (s)

Q̂(s) +
�P(s)
�f (s)

P̂(s),

and the normalized noise power spectral density of y in the Fourier domain (s = iω) is
calculated as follows:

S(ω) =
〈|y – f̂ |〉 =

∣∣∣∣�Q

�f

∣∣∣∣
〈|Q̂|

〉
+
∣∣∣∣�P

�f

∣∣∣∣
〈|P̂|

〉

≥ 

√
|�Q||�P|

|�f |
〈|Q̂|

〉〈|P̂|
〉≥ |ω – ω

m|
γωm

= SSQL(ω).

The lower bound is called the SQL. Note that the last inequality is due to the Heisenberg
uncertainty relation of the normalized noise power, i.e., 〈|Q̂|〉〈|P̂|〉 ≥ /. Hence, the
essential reason why SQL appears is that P̂out

 contains both the back-action noise Q̂ and
the shot noise P̂. Therefore, toward the high-precision detection of f̂ , we need BAE; that
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is, the system structure should be modified by some means so that the back-action noise
is completely evaded in the output signal (note that the shot noise can never be evaded).
The condition for BAE can be expressed in terms of the transfer function as follows [,
]; i.e., for the modified (controlled) sensor, the transfer function from the back-action
noise to the measurement output must satisfy

�Q(s) = , ∀s. ()

Equivalently, P̂out
 contains only the shot noise P̂; hence, in this case the signal to noise

ratio can be further improved by injecting a P̂-squeezed (meaning 〈|P̂|〉 < /) probe
field into the system.

3 Coherent feedback control for back-action evasion
3.1 Coherent and measurement-based feedback control
There are two schemes for controlling a quantum system via feedback. The first one is the
measurement-based feedback [–] illustrated in Figure (a). In this scheme, we mea-
sure the output fields and feed the measurement results back to control the plant system.
On the other hand, in the coherent feedback scheme [, –] shown in Figure (b),
the feedback loop dose not contain any measurement component and the plant system is
controlled by another quantum system. Recently we find several works comparing the per-
formance of these two schemes [, –]. In particular, it was shown in [] that there
are some control tasks that cannot be achieved by any measurement-based feedback but
can be done by a coherent one. More specifically, those tasks are realizing BAE measure-
ment, generating a quantum non-demolished variable, and generating a decoherence-free
subsystem; in our case, of course, the first one is crucial. Hence, here we aim to develop a
theory for designing a coherent feedback controller such that the whole controlled system
accomplishes BAE.

3.2 Coherent feedback for BAE
As discussed in Section ., the geometric control theory for disturbance decoupling prob-
lem is formulated for the controlled system with special structure (); in particular, the co-
efficient matrix of the disturbance d(t) is of the form [E�, O]� and that of the state vector in
the output z(t) is [H , O]. Here we consider a class of coherent feedback configuration such
that the whole closed-loop system dynamics has this structure, in order for the geometric
control theory to be directly applicable.

First, for the plant system given by Eqs. () and (), we assume that the system couples
to all the probe fields in the same way; i.e.,

Bj = B, ∀j. ()

Figure 3 General configurations of feedback
control for a given plant quantum system:
(a) measurement-based feedback and
(b) coherent feedback.
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Figure 4 Coherent feedback control of the 3 input-output
plant system via the 2 input-output controller.

This immediately leads to Cj = C, ∀j. Next, as the controller, we take the following special
linear quantum system with (m – ) input-output fields:

dx̂K

dt
= AK x̂K +

m–∑
j=

BK ŵj, ŵout
j = CK x̂K + ŵj (j = , , . . . , m – ), ()

where the matrices (AK , BK , CK ) satisfy the physical realizability condition (). Note that,
corresponding to the plant structure, we assumed that the controller couples to all the
fields in the same way, specified by CK . Here we emphasize that the number of channels, m,
should be as small as possible from a viewpoint of implementation; hence in this paper let
us consider the case m = . Now, we consider the coherent feedback connection illustrated
in Figure , i.e.,

ŵ = SŴ out
 , ŵ = SŴ out

 , Ŵ = Tŵout
 , Ŵ = Tŵout

 ,

where Sj and Tj are × unitary matrices representing the scattering process of the fields;
recall that the scattering process Âout = eiθ Â with θ ∈R the phase shift can be represented
in the quadrature form as

[
Q̂out

P̂out

]
= S(θ )

[
Q̂
P̂

]
=

[
cos θ – sin θ

sin θ cos θ

][
Q̂
P̂

]
.

Combining the above equations, we find that the whole closed-loop system with the
augmented variable x̂E = [x̂�, x̂�

K ]� is given by

dx̂E

dt
= AEx̂E + BEŴ + bEf̂ , Ŵ out

 = CEx̂E + DEŴ, ()

where

AE =

[
A + B{TS + TS(TS + I)}C B{T + T(I + ST)}CK

BK {(I + ST)S + S}C AK + BK STCK

]
,

BE =

[
B(I + TS + TSTS)

BK (I + ST)S

]
,

CE =
[
(TSTS + TS + I)C T(ST + I)CK

]
,

DE = TSTS, bE =
[

b� O
]�

.
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Figure 5 Coherent feedback controlled system
composed of the opto-mechanical oscillator, for
realizing BAE. The triangle represents the
π /2-phase shifter corresponding to Eq. (17).

Therefore, the desired system structure of the form () is realized if we take

ST = –I. ()

In addition, it is required that the back-action noise Q̂ dose not appear directly in P̂out
 ,

which can be realized by taking

DE = –TS = ±I. ()

Here we set Sj and Tj to be the π/-phase shifter (see Figure ) to satisfy the above con-
ditions () and ();

Sj = Tj = S =

[
 –
 

]
(j = , ). ()

As a consequence, we end up with

AE =

[
A – BC BSCK

BK SC AK – BK CK

]
, bE =

[
b
O

]
, BE =

[
B
O

]
,

CE =
[

C O
]

, DE = I.

()

This is certainly of the form () with DK = –I. Hence, we can now directly apply the ge-
ometric control theory to design a coherent feedback controller achieving BAE; that is,
our aim is to find (AK , BK , CK ) such that, for the closed-loop system (), the back-action
noise Q̂ (the first element of Ŵ) does not appear in the measurement output P̂out

 (the
second element of Ŵ out

 ). Note that those matrices must satisfy the physical realizability
condition (), and thus they cannot be freely chosen. We need to take into account this
additional constraint when applying the geometric control theory to determine the con-
troller matrices.

3.3 Coherent feedback realization of BAE in the opto-mechanical system
Here we apply the coherent feedback scheme elaborated in Section . to the opto-
mechanical system studied in Section .. The goal is, as mentioned before, to determine
the controller matrices (AK , BK , CK ) such that the closed-loop system achieves BAE. Here,
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Figure 6 The set of controllers satisfying the
condition in each step. For the controller to be a
quantum system, it must be included in the set (iii).
In the set (iv), all the controllers are equivalent up to
the phase shift.

we provide a step-by-step procedure to solve this problem; the relationships of the class
of controllers determined in each step is depicted in Figure .

(i) First, to apply the geometric control theory developed above, we need to modify the
plant system so that it is a  input-output linear quantum system; here we consider the
plant composed of a mechanical oscillator and a -ports optical cavity, shown in Figure .
As assumed before, those ports have the same coupling constant κ . In this case the matrix
A given in Eq. () is replaced by

A =

⎡
⎢⎢⎢⎣

 ωm  
–ωm  g 

  –κ/ 
g   –κ/

⎤
⎥⎥⎥⎦ .

Now we focus only on the back-action noise Q̂ and the measurement output P̂out
 ; hence

the closed-loop system () and (), which ignores the shot noise term in the dynamical
equation, is given by

dx̂E

dt
=

[
A – BC BSCK

BK SC AK – BK CK

]
x̂E +

[
E
O

]
Q̂ +

[
b
O

]
f̂ ,

P̂out
 =

[
H O

]
x̂E + P̂,

where B = B, C = C, and b are given in Eq. (), and

E = –
√

κ
[
   

]�
, H =

√
κ
[
   

]
.

This system is certainly of the form (), where now DK = –I.
(ii) In the next step we apply Theorem  to check if there exists a feedback controller such

that the above closed-loop system achieves BAE; recall that the necessary and sufficient
condition is Eq. (), i.e., E ⊆ V ⊆ V ⊆H, where now

E = Im E = span

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣






⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, H = Ker H = span

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣






⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣






⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣






⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
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To check if this solvability condition is satisfied, we use Corollary ; from E ∩ C = Im E ∩
Ker C = φ and H⊕B = Ker H ⊕ Im B = R

, the algorithms given in Appendix A yield

V∗(C,E) = E , V∗(B,H) = H, ()

implying that the condition in Corollary , i.e., V∗(C,E) ⊆ V∗(B,H), is satisfied. Thus, we
now see that the BAE problem is solvable, as long as there is no constraint on the controller
parameters.

Next we aim to determine the controller matrices (AK , BK , CK ), using Theorem . First
we set V = V∗(C,E) = E and V = V∗(B,H) = H; note that (V,V) is a (C, A, B)-pair. Then,
from Theorem , there exists a feedback controller with dimension dimXK = dimV –
dimV = . Moreover, noting again that DK = –I, there exist matrices F ∈ F (V), G ∈
G(V), and N such that

Ker F = Ker(F + C) ⊇ V, Im G = Im(G + B) ⊆ V, Ker N = V.

These conditions lead to

F =

[
f f –

√
κ f

g√
κ

  f

]
, G =

⎡
⎢⎢⎢⎢⎣

 g

– g√
κ

g

g g


√

κ

⎤
⎥⎥⎥⎥⎦ , N =

[
n n  n

n n  n

]
,

where fij, gij, and nij are free parameters. Then the controller matrices (AK , BK , CK ) can be
identified by Eq. () with the above matrices (F , G, N); specifically, by substituting CK →
SCK , BK → BK S, and AK → AK – BK CK in Eq. (), we have

SCK N = F + C, BK S = –N(G + B), (AK – BK CK )N = N(A + BF + GC),

which yield

AK = N(A + BF + GC + GF)N+, BK = –NG�, CK = �FN+, ()

where N+ is the right inverse to N , i.e., NN+ = I.
(iii) Note again that the controller () has to satisfy the physical realizability condi-

tion (), which is now AK� + �A�
K + BK�B�

K = O and BK = �C�
K �. These constraints are

represented in terms of the parameters as follows:

f = –g, f = g, nn – nn = –, fn = fn – f,

f +
√

κ =
g√
κ

n,
(



κ +

√
κf

)
n + ωmn = –

√
κf,

ωmn –
(



κ +

√
κf

)
n =

√
κf,

()

where n = nn – nn and n = nn – nn. This is one of our main results;
the linear controller () achieving BAE for the opto-mechanical oscillator can be fully



Yokotera and Yamamoto EPJ Quantum Technology  (2016) 3:15 Page 13 of 22

parametrized by Eq. () satisfying the condition (). We emphasize that this full
parametrization of the controller can be obtained thanks to the general problem formu-
lation based on the geometric control theory.

(iv) In practice, of course, we need to determine a concrete set of parameters to construct
the controller. Especially here let us consider a passive system; this is a static quantum sys-
tem such as an empty optical cavity. The main reason for choosing a passive system rather
than a non-passive (or active) one such as an optical parametric oscillator is that, due to
the external pumping energy, the latter could become fragile and also its physical imple-
mentation must be more involved compared to a passive system []. Now the condition
for the system (AK , BK , CK ) to be passive is given by �AK� = –AK and �BK� = –BK ; the
general result of this fact is given in Theorem  in Appendix B. From these conditions, the
system parameters are imposed to satisfy, in addition to Eq. (), the following equalities:

f =
g√
κ

, f = , n = –n, n = n. ()

There is still some freedom in determining nij, which however corresponds to simply the
phase shift at the input-output ports of the controller, as indicated from Eq. (). Thus, the
passive controller achieving BAE in this example is unique up to the phase shift. Here par-
ticularly we chose n =  and n = . Then the controller matrices () satisfying Eqs. ()
and () are determined as

AK =

[
– g

κ
–ωm

ωm – g

κ

]
, CK = –B�

K =

[ g√
κ


 g√

κ

]
.

As illustrated in Figure , the controller specified by these matrices can be realized as
a single-mode, -inputs and -outputs optical cavity with decay rate g/κ and detuning
–ωm. In other words, if we take the cavity with the following Hamiltonian and the coupling
operator (â = (q̂ + ip̂)/

√
 is the cavity mode)

ĤK = �â∗
â =

�


(
q̂

 + p̂

)
, L̂K =

√
κK â =

√
κK


(q̂ + ip̂), ()

then to satisfy the BAE condition the controller parameters (�,κK ) must satisfy

� = –ωm, κK = g/κ . ()

To summarize, the above-designed sensing system composed of the opto-mechanical os-
cillator (plant) and the optical cavity (controller), which are combined via coherent feed-
back, satisfies the BAE condition. Hence, it can work as a high-precision detector of the
force f̂ below the SQL, particularly when the P̂-squeezed probe input field is used; this
fact will be demonstrated in Section .

4 Direct interaction scheme
In this section, we study another control scheme for achieving BAE. As illustrated in Fig-
ure (a), the controller in this case is directly connected to the plant, not through a coher-
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Figure 7 (a) General configuration of direct interaction scheme. (b) Physical implementation of the
passive direct interaction controller for the opto-mechanical oscillator.

ent feedback; hence this scheme is called the direct interaction. The controller is charac-
terized by the following two Hamiltonians:

ĤK =



x̂�
K RK x̂K , Ĥint =



(
x̂�Rx̂K + x̂�

K Rx̂
)
, ()

where x̂K = [q̂′
, p̂′

, . . . , q̂′
nk

, p̂′
nk

]� is the vector of controller variables with nk the number
of modes of the controller. ĤK is the controller’s self Hamiltonian with RK ∈ R

nk×nk .
Also Ĥint with R ∈ R

n×nk , R ∈ R
nk×n represents the coupling between the plant and

the controller. Note that, for the Hamiltonians ĤK and Ĥint to be Hermitian, the matrices
must satisfy RK = R�

K and R�
 = R; these are the physical realizability conditions in the

scenario of direct interaction. In particular, here we consider a plant system interacting
with a single probe field Ŵ, with coupling matrices B = B and C = C. Then, the whole
dynamics of the augmented system with variable x̂E = [x̂�, x̂�

K ]� is given by

dx̂E

dt
= AEx̂E + BEŴ + bEf̂ , Ŵ out

 = CEx̂E + Ŵ, ()

where

AE =

[
A �nR

�nk R �nk RK

]
, BE =

[
B
O

]
, CE =

[
C�

O

]�
, bE =

[
b
O

]
. ()

Note that BE , CE , and bE are the same matrices as those in Eq. (). Also, comparing the
matrices () and (), we have that DK = O, which thus leads to F = F and G = G in
Theorem . Now, again for the opto-mechanical system illustrated in Figure , let us aim
to design the direct interaction controller, so that the whole system () achieves BAE;
that is, the problem is to determine the matrices (RK , R, R) so that the back-action noise
Q̂ does not appear in the measurement output P̂out

 . For this purpose, we go through the
same procedure as that taken in Section ..

(i) Because of the structure of the matrices BE and CE , the system is already of the
form (), where the geometric control theory is directly applicable.

(ii) Because we now focus on the same plant system as that in Section ., the same
conclusion is obtained; that is, the BAE problem is solvable as long as there is no constraint
on the controller matrices (RK , R, R).

The controller matrices can be determined in a similar way to Section . as follows.
First, because the (C, A, B)-pair (V,V) is the same as before, it follows that dimXK = ,
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i.e., nk = . Then, from Theorem  with the fact that F = F and G = G, we find that the
direct interaction controller can be parameterized as follows:

RK = –�N(A + BF + GC)N+, R = –�BFN+, R = �NGC. ()

The matrices F , G, and N satisfy Ker F ⊇ V, Im G ⊆ V, and Ker N = V, which lead to

F =

[
f f  f
g√
κ

  f

]
, G =

⎡
⎢⎢⎢⎢⎣

 g

– g√
κ

g

g g

 

⎤
⎥⎥⎥⎥⎦ ,

N =

[
n n  n

n n  n

]
,

()

where fij, gij, and nij are free parameters.
(iii) The controller matrices have to satisfy the physical realizability conditions RK = R�

K

and R�
 = R; these constraints impose the parameters to satisfy

f = –g, f = g, nn – nn = –, fn = fn – f,

f =
g√
κ

n,
(

κ


+

√
κf

)
n + ωmn = –

√
κf,

ωmn –
(

κ


+

√
κ f

)
n =

√
κ f,

()

where n = nn – nn and n = nn – nn. Equations (), (), and () provide
the full parametrization of the direct interaction controller.

(iv) To specify a set of parameters, as in the case of Section ., let us aim to design a
passive controller. From Theorem  in Appendix B, RK and R = R�

 satisfy the condition
�RK� = –RK and �R� = –R, which lead to the same equalities given in Eq. (). Then,
setting the parameters to be n =  and n = , we can determine the matrices RK and R

as follows:

RK =

[
–ωm 

 –ωm

]
, R = R�

 =

[
  g 
   g

]
.

The controller specified by these matrices can be physically implemented as illustrated in
Figure (b); that is, it is a single-mode detuned cavity with Hamiltonian ĤK = –ωmâ∗

â,
which couples to the plant through a beam-splitter (BS) represented by Ĥint = g(ââ∗

 +
â∗

â).

Remark We can employ an active controller, as proposed in []. In this case the inter-
action Hamiltonian is given by Ĥint = gB(ââ∗

 + â∗
â) + gD(ââ + â∗

â∗
), while the system’s

self-Hamiltonian is the same as above; ĤK = –ωmâ∗
â. That is, the controller couples to

the plant through a non-degenerate optical parametric amplification process in addition
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to the BS interaction. To satisfy the BAE condition, the parameters must satisfy gB + gD = g .
Note that this direct interaction controller can be specified, in the full-parameterization
(), (), and (), by

f = f = f = , n = –n = , n = n = .

5 Approximate back-action evasion
We have demonstrated in Sections . and  that the BAE condition can be achieved by
engineering an appropriate auxiliary system and connecting it to the plant. However, in
a practical situation, it cannot be expected to realize such perfect BAE due to several ex-
perimental imperfections. Hence, in a realistic setup, we should modify our strategy for
engineering a sensor so that it would accomplish approximate BAE. Then, looking back
into Section . where the BAE condition, �Q(s) = , ∀s, was obtained, we are naturally
led to consider the following optimization problem to design an auxiliary system achieving
the approximate BAE:

min

∥∥∥∥�Q(s)
�f (s)

∥∥∥∥, ()

where ‖•‖ denotes a valid norm of a complex function. In particular, in the field of robust
control theory, the following H norm and the H∞ norm are often used []:

‖�‖ =

√


π

∫ ∞

–∞

∣∣�(iω)
∣∣dω, ‖�‖∞ = max

ω

∣∣�(iω)
∣∣.

That is, the H or H∞ control theory provides a general procedure for synthesizing a feed-
back controller that minimizes the above norm. In this paper, we take the H norm, mainly
owing to the broadband noise-reduction nature of the H controller. Then, rather than
pursuing an optimal quantum H controller based on the quantum H control theory [,
], here we take the following geometric-control-theoretical approach to solve the prob-
lem (). That is, first we apply the method developed in Section  or  to the idealized
system and obtain the controller achieving BAE; then, in the practical setup containing
some unwanted noise, we make a local modification of the controller parameters obtained
in the first step, to minimize the cost ‖�Q(s)/�f (s)‖.

As a demonstration, here we consider the coherent feedback control for the opto-
mechanical system studied in Section ., which is now subjected to the thermal noise f̂th.
Following the above-described policy, we employ the coherent feedback controller con-
structed for the idealized system that ignores f̂th, leading to the controller given by Eqs. ()
and (), illustrated in Figure . The closed-loop system with variable x̂E = [x̂�, x̂�

K ]�,
which now takes into account the realistic imperfections, then obeys the following dy-
namics:

dx̂E

dt
= ÃEx̂E + BEŴ + bE(f̂th + f̂ ), Ŵ out

 = CEx̂E + Ŵ, ()
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where

ÃE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

 ωm    
–ωm –γ g   

  –κ/   √
κκK

g   –κ/ –√
κκK 

   √
κκK  �

  –√
κκK  –� 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

BE , CE , and bE are the same matrices given in Eq. (). f̂th is the thermal noise satisfy-
ing 〈f̂th(t)f̂th(t′)〉 � n̄δ(t – t′), where n̄ is the mean phonon number at thermal equilibrium
[, ]. Note that the damping effect appears in the (, ) component of ÃE due to the
stochastic nature of f̂th. Also, again, κK and � are the decay rate and the detuning of the
controller cavity, respectively. In the idealized setting where f̂th is negligible, the perfect
BAE is achieved by choosing the parameters satisfying Eq. (). The measurement output
of this closed-loop system is, in the Laplace domain, represented by

P̂out
 (s) = �̃f

(
f̂th(s) + f̂ (s)

)
+ �̃QQ̂(s) + �̃PP̂(s).

The normalized noise power spectral density of y(s) = P̂out
 (s)/�̃f (s) is calculated as

S̃(ω) =
〈∣∣y(iω) – f̂ (iω)

∣∣〉 =
〈|f̂th|

〉
+
∣∣∣∣ �̃Q

�̃f

∣∣∣∣
〈|Q̂|

〉
+
∣∣∣∣ �̃P

�̃f

∣∣∣∣
〈|P̂|

〉
. ()

The coefficient of the back-action noise is given by

�̃Q(s)
�̃f (s)

= –
√

κ{κκK�(s + γ s + ω
m) + gωm(s + �)}

gωm
√

γ {(s + κ/)(s + �) + κκK s} . ()

Our goal is to find the optimal parameters (κK ,�) that minimize the H norm of the trans-
fer function, �̃Q/�̃f .

The system parameters are taken as follows []: ωm/π = . MHz, κ/π = . MHz,
γ /π = . kHz, g/π = . MHz, n̄ � . × , and the effective mass is . × – kg.
We then have Figure , showing ‖�̃Q/�̃f ‖ as a function of κK and �. This figure shows
that there exists a unique pair of (κopt

K ,�opt) that minimizes the norm, and they are given
by κ

opt
K /π = . MHz and �opt/π = –. MHz, which are actually close to the ideal

Figure 8 H2 norm ‖˜�Q/˜�f ‖2 versus the
coupling constant κK and the detuning �.
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Figure 9 Normalized power spectral densities of
the noise. The black solid line represents the SQL
(35), and the dot-dashed blue line does the case
without feedback. The dotted green and dashed red
lines show the cases for the feedback controlled
system, with coherent and squeezed probe field,
respectively.

values (). Figure  shows the value of Eq. () with these optimal parameters (κopt
K ,�opt),

where the noise floor 〈|f̂th|〉 is subtracted. The solid black line represents the SQL, which
is now given by

S̃SQL(ω) =
|(ω – ω

m) – iγω|
γωm

. ()

Then the dot-dashed blue and dotted green lines indicate that, in the low frequency range,
the coherent feedback controller can suppress the noise below the SQL, while, by defini-
tion, the noise power of the autonomous (i.e., uncontrolled) plant system is above the
SQL. Moreover, this effect can be enhanced by injecting a P̂-squeezed probe field (mean-
ing 〈|Q̂|〉 = er/ and 〈|P̂|〉 = e–r/) into the system. In fact the dashed red line in the
figure illustrates the case r =  (about  dB squeezing), showing the significant reduction
of the noise power.

6 Conclusion
The main contribution of this paper lies in that it first provides the general theory for
constructing a back-action evading sensor for linear quantum systems, based on the well-
developed classical geometric control theory. The power of the theory has been demon-
strated by showing that, for the typical opto-mechanical oscillator, a full parametrization
of the auxiliary coherent-feedback and direct interaction controller achieving BAE was
derived, which contains the result of []. Note that, although we have studied a simple
example for the purpose of demonstration, the real advantage of the theory developed in
this paper will appear when dealing with more complicated multi-mode systems such as
an opto-mechanical system containing a membrane [–]. Another contribution of this
paper is to provide a general procedure for designing an approximate BAE sensor under
realistic imperfections; that is, an optimal approximate BAE system can be obtained by
solving the minimization problem of the transfer function from the back-action noise to
the measurement output. While in Section  we have provided a simple approach based
on the geometric control theory for solving this problem, the H or H∞ control theory
could be employed for systematic design of an approximate BAE controller even for the
above-mentioned complicated system. This is also an important future research direction
of this work.
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Appendix A: Algorithms for computing V∗ and V∗
The set of (A, B)-invariant subspaces has a unique maximum element contained in a given
subspace H ⊆ X . This space, denoted by V∗(B,H), can be computed by the following
algorithm:

V∗-algorithm:

(Step ) V := H,

(Step ) Vi := H ∩ A–(Vi– ⊕B) (i = , , . . .),

(Step ) V∗(B,H) = Vi (if Vi = Vi– in Step ).

Similarly, the set of (C, A)-invariant subspaces has a unique minimum element contain-
ing a given subspace E ⊆ X , and this space, denoted by V∗(C,E), can be computed by the
following algorithm:

V∗-algorithm:

(Step ) V := E ,

(Step ) Vi := E ⊕ A(Vi– ∩ C) (i = , , . . .),

(Step ) V∗(C,E) = Vi (if Vi = Vi– in Step ).

Appendix B: Passivity condition of linear quantum systems
This appendix provides the passivity condition of a general linear quantum system, which
have been given in []. First note that the system dynamics () and (), which can be
represented as

dx̂
dt

= Ax̂ + BŴ , Ŵ out = Cx̂ + DŴ , ()

with Ŵ = [Ŵ, . . . , Ŵm]�, has the following equivalent expression:

d
dt

[
â
â�

]
= A

[
â
â�

]
+ B

[
Â
Â�

]
,

[
Âout

Âout�

]
= C

[
â
â�

]
+ D

[
Â
Â�

]
, ()

where â = [â, . . . , ân]� and Â = [Â, . . . , Âm]� are vectors of annihilation operators. By def-
inition, â� = [â∗

 , . . . , â∗
n]�. The coefficient matrices are of the form

A =

[
A– A+

A�
+ A�

–

]
, B =

[
B– B+

B�
+ B�

–

]
,

C =

[
C– C+

C�
+ C�

–

]
, D =

[
D– D+

D�
+ D�

–

]
.

()

As in the case of (), these matrices have to satisfy the physical realizability condition;
see [, ]. The passivity condition of this system is defined as follows:
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Definition  The system () is said to be passive if the matrices satisfy A+ = O and B+ =
O, in addition to the physical realizability condition.

Note that a passive system is constituted only with annihilation operator variables; a
typical optical realization of the passive system is an empty optical cavity. Moreover,
D+ = O is already satisfied and B+ = O leads to C+ = O. This is the reason why it is
sufficient to consider the constraints only on A+ and B+. Then the goal here is to rep-
resent the conditions A+ = B+ = O in terms of the coefficient matrices of Eq. (). For
this purpose, let us introduce the permutation matrix Pn as follows; for a column vec-
tor z = [z, z, . . . , zn]�, Pn is defined through Pnz = [z, z, . . . , zn–, z, z, . . . , zn]�. Note
that Pn satisfies PnP�

n = P�
n Pn = In. Then, the coefficient matrices of the above two system

representations are connected by

A = P�
n ÃPn, B = P�

n B̃Pm, C = P�
mC̃Pn, D = P�

mD̃Pm,

where

Ã =



[
A– + A�

– + A+ + A�
+ i(A– – A�

– – A+ + A�
+)

–i(A– – A�
– + A+ – A�

+) A– + A�
– – (A+ + A�

+)

]
.

B̃ , C̃ , and D̃ have the same forms as above. Then, we have the following theorem, provid-
ing the passivity condition in the quadrature form:

Theorem  The system () is passive if and only if, in addition to the physical realizability
condition (), the following equalities hold:

�nA�n = –A, �nB�m = –B.

Proof Let us first define 
n = � ⊗ In = [O, In; –In, O], which leads to P�
n 
nPn = �n. Then,

we can prove

�nA�n = –A ⇐⇒ 
nÃ
n = –Ã.

The condition in the right hand side is equivalent to A+ +A�
+ = O and A+ –A�

+ = O, which
thus leads to A+ = O. Also, from a similar calculation we obtain �nB�m = –B ⇔ B+ = O. �

Let us next consider the passivity condition of the direct interaction controller discussed
in Section . The setup is that, for a given linear quantum system, we add an auxiliary
component with variable x̂K , which is characterized by the Hamiltonians (). The point
is that these Hamiltonians have the following equivalent representations in terms of the
vector of annihilation operators â and âK :

ĤK =



[
â†

K â�
K

]
RK

[
âK

â�
K

]
,

Ĥint =



([
â† â�

]
R

[
âK

â�
K

]
+
[

â†
K â�

K

]
R

[
â
â�

])
.

()
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The matrices RK , R, and R are of the same forms as those in Eq. (). Note that they
have to satisfy the physical realizability conditions RK = R†

K and R†
 = R. Now we can

define the passivity property of the direct interaction controller; that is, if the Hamilto-
nians () does not contain any quadratic term such as â∗

K , and â∗
 â∗

K ,, then the direct
interaction controller is passive. The formal definition is given as follows:

Definition  The direct interaction controller constructed by Hamiltonians () is said
to be passive if, in addition to the physical realizability conditions RK = R†

K and R†
 = R,

the matrices satisfy RK+ = O and R+ = O.

Through almost the same way shown above, we obtain the following result:

Theorem  The direct interaction controller constructed by Hamiltonians () is passive
if and only if, in addition to the physical realizability conditions RK = R�

K and R�
 = R, the

following equalities hold:

�nk RK�nk = –RK , �nk R�n = –R.
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Endnote
a This condition is satisfied if the transfer function from d(s) to z(s) is zero for all s, for the modified system. Or

equivalently, the controllable subspace with respect to d(t) is contained in the unobservable subspace with respect
to z(t).
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