Skip to main content

Advertisement

Log in

Study of electronic, mechanical, thermoelectric and optical properties of K2ScAuZ6 (Z = Br, I) for energy harvesting

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The quest of clean energy makes the double perovskites remarkable materials for thermoelectric and optoelectronic applications. Here, K2ScAuZ6 (Z = Br, I) has been analyzed thoroughly in terms of mechanical, thermoelectric, and optical aspirants. The formation energy, elastic constants, and tolerance factor are applied to make sure the stability. The hardness, ductile nature, lattice conductivity, Debye and melting temperatures are reported significantly. The band gaps (2.0, 1.45) eV for (Br, I) DPs confirm absorption bands in visible and ultraviolet sections. The implementation of spin orbit coupling due to Sc and Au which reduces the band gaps limits to 0.06 eV. The large absorption, refraction, polarization, and optical loss of energy have been addressed for optoelectronic applications. Furthermore, transport characteristics are studied by Seebeck coefficient, thermal and electrical conductivities. The optimized figure of merit at room temperature and extremely small lattice thermal conductivity make them substantial materials for thermoelectric generators.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data used in this paper will be available on reasonable request.]

Abbreviations

RDC:

Real dielectric constant

RI:

Refractive index

IDC:

Imaginary dielectric constant

References

  1. J. Kotcher, E. Maibach, W.T. Choi, Fossil fuels are harming our brains: identifying key messages about the health effects of air pollution from fossil fuels. BMC Public Health 19, 1079 (2019)

    Article  Google Scholar 

  2. P.K. Kung, M.H. Li, P.L. Lin et al., Lead-free double perovskites for perovskite solar cells. Sol. RRL 4, 1900306 (2020)

    Article  Google Scholar 

  3. N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103, 15729 (2006)

    Article  ADS  Google Scholar 

  4. M. Rafique, Y. Shuaia, I. Ahmed, R. Shaikh, M.A. Tunio, Tailoring electronic and optical parameters of bilayer graphene through, boron and nitrogen atom co-substitution; an ab-initio study. Appl. Surf Sci. 480, 463 (2019)

    Article  ADS  Google Scholar 

  5. M. Rafique, N.H. Mirjat, A.M. Soomro, S. Khokhar, Y. Shuai, Manipulation of inherent characteristics of graphene through N and mg atom co-doping; a DFT study. Phys. Lett. A. 382, 1108 (2018)

    Article  ADS  Google Scholar 

  6. Q. Mahmood, M. Younas, M.G.B. Ashiq, S.M. Ramay, A. Mahmood, H.M. Ghaithan, First principle study of lead-free double perovskites halides Rb2Pd(Cl/Br)6 for solar cells and renewable energy devices: a quantum DFT. Int. J. Energy Res. 45(10), 14995–15004 (2021)

    Article  Google Scholar 

  7. S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, Colloidally prepared La doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356, 167–171 (2017)

    Article  ADS  Google Scholar 

  8. Y. Shao, Y. Yuan, J. Huang, Correlation of energy disorder and open circuit voltage in hybrid perovskite solar cells. Nat. Energy 1, 15001 (2016)

    Article  ADS  Google Scholar 

  9. H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014)

    Article  ADS  Google Scholar 

  10. M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016)

    Article  ADS  Google Scholar 

  11. Q. Zhang, H. Ting, S. Wei, D. Huang, C. Wu, W. Sun, B. Qu, S. Wang, Z. Chen, L. Xiao, Recent progress in lead-free perovskite (-like) solar cell Mater. Today Energy 8, 157–165 (2018)

    Article  Google Scholar 

  12. A. Jodlowski, D. Rodríguez-Padrón, R. Luque, G. de Miguel, Alternative perovskites for photovoltaics. Adv. Energy Mater. 21(8), 1703120 (2018)

    Article  Google Scholar 

  13. Z. Xiao, W. Meng, J. Wang, D.B. Mitzi, Y. Yan, Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater. Horiz. 4, 206–216 (2017)

    Article  Google Scholar 

  14. A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138, 2138–2141 (2016)

    Article  Google Scholar 

  15. G. Volonakis, M.R. Filip, A.A. Haghighirad et al., Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 7, 1254 (2016)

    Article  Google Scholar 

  16. A.H. Slavney, L. Leppert, D. Bartesaghi et al., Defect-induced band-edge reconstruction of a bismuth-halide double perovskite for visible-light absorption. J. Am. Chem. Soc. 139, 5015 (2017)

    Article  Google Scholar 

  17. J. Li, J. Duan, X. Yang, Y. Duan, P. Yang, Q. Tang, Review on recent progress of lead-free halide perovskites in optoelectronic applications. Nano Energy 80, 105526 (2021)

    Article  Google Scholar 

  18. Q. Mehmood, M.H. Alhossani, M.H. Rashid, T.H. Flebman, H. Althib, First-principles study of lead-free double perovskites Rb2TeX6 (X = Cl, Br, and I) for solar cells and renewable energy. Mater. Sci. Eng. B 266, 115064 (2021)

    Article  Google Scholar 

  19. Z. Deng, F. Wei, S. Sun, G. Kieslich, A.K. Cheetham, P.D. Bristowe, Exploring the properties of lead-free hybrid double perovskites using a combined computational experimental approach. J. Mater. Chem. A 4(31), 12025–12029 (2016)

    Article  Google Scholar 

  20. A.A. Dotsenko, V.I. Vovna, V.V. Korochentsev, A.G. Mirochnik, O.L. Shcheka, T.V. Sedakova, V.I. Sergienko, Halide perovskite-derived compounds Rb2TeX6 (X = Cl, Br, and I): electronic structure of the ground and first excited states. Inorg. Chem. 58, 6796–6803 (2019)

    Article  Google Scholar 

  21. A.E. Maughan, A.M. Ganose, M.M. Bordelon, E.M. Miller, D.O. Scanlon, J.R. Neilson, Defect tolerance to intolerance in the vacancy-ordered double perovskites semiconductors Cs2SnI6 and Cs2TeI6. J. Am. Chem. Soc. 138, 8453–8464 (2016)

    Article  Google Scholar 

  22. Y. Cai, W. Xie, H. Ding, Y. Chen, K. Thirumal, L.H. Wong, N. Mathews, S.G. Mhaisalkar, M. Sherburne, M. Asta, Computational study of halide perovskite-derived A2BX6 inorganic compounds: chemical trends in electronic structure and structural stability. Chem. Mater. 29, 7740–7749 (2017)

    Article  Google Scholar 

  23. A.E. Fedorovskiy, N.A. Drigo, M.K. Nazeeruddin, The role of Goldschmidt’s tolerance factor in the formation of A2BX6 double halide perovskites and its optimal range. Small Methods 4, 1900426 (2019)

    Article  Google Scholar 

  24. M. Aslam Khan, H.A. Alburaih, N.A. Noor, A. Dahshan, Comprehensive investigation of opto-electronic and transport properties of Cs2ScAgX6 (X = Cl, Br, I) for solar cells and thermoelectric application. Sol. Energy 225, 122–128 (2021)

    Article  ADS  Google Scholar 

  25. P.A. Nawaz, G.M. Mustafa, S.S. Iqbal, N.A. Noor, T.S. Ahmad, A. Mahmood, R. Neffati, Theoretical investigations of optoelectronic and transport properties of Rb2YInX6 (X = Cl, Br, I) double perovskite materials for solar cell applications. Sol. Energy 231, 586–592 (2022)

    Article  ADS  Google Scholar 

  26. S. Nazir, N.A. Noor, M. Manzoor, A. Dahshan, Ab-initio simulations of Li-based double perovksites A2LiInBr6 (A = Rb, Cs) for solar cell applications. Chem. Phys. Lett. 798, 139612 (2022)

    Article  Google Scholar 

  27. R. Anbarasan, M. Srinivasan, R. Suriakarthick, H. Albalawi, J.K. Sundar, P. Ramasamy, Q. Mahmood, Exploring the structural, mechanical, electronic, and optical properties of double perovskites of Cs2AgInX6 (X = Cl, Br, I) by first-principles calculations. J. Solid-State Chem. 310, 123025 (2022)

    Article  Google Scholar 

  28. M.W. Mukhtar, M. Ramzan, M. Rashid, G. Naz, M. Imran, F. Fahim, A.A. Al-Obaid, T.I. Al-Muhimeed, Q. Mahmood, New lead-free double perovskites A2NaInI6 (A = Cs, Rb) for solar cells and renewable energy; first principles analysis. Mater. Sci. Eng. B 273, 115420 (2021)

    Article  Google Scholar 

  29. N.A. Noor, M.W. Iqbal, T. Zelai, A. Mahmood, H.M. Shaikh, S.M. Ramay, W. Al-Masry, Analysis of direct band gap A2ScInI6 (A = Rb, Cs) double perovskite halides using DFT approach for renewable energy devices. JMRT 13, 2491–2500 (2021)

    Google Scholar 

  30. S. Iqbal, G.M. Mustafa, M. Asghar, N.A. Noor, M.W. Iqbal, A. Mahmood, Y.H. Shin, Tuning the optoelectronic and thermoelectric characteristics of narrow bandgap Rb2AlInX6 (X= Cl, Br, I) double perovskites: A DFT study. Mater. Sci. Semicond. Process. 143, 106551 (2022)

    Article  Google Scholar 

  31. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, An augmented plane wave+ local orbitals program for calculating crystal properties. Techn. (2001)

  32. K. Schwarz, P. Blaha, G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147, 71 (2002)

    Article  ADS  MATH  Google Scholar 

  33. M. Petersen, F. Wagner, L. Hufnagel, M. Scheffler, P. Blaha, K. Schwarz, Improving the efficiency of FP-LAPW calculations. Comput. Phys. Commun. 126, 294–309 (2000)

    Article  ADS  MATH  Google Scholar 

  34. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  36. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semi-local exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  37. G.K. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  MATH  Google Scholar 

  38. G. Nazir, A. Rehman, S. Hussain, E. Algrafy, Q. Mahmood, A. Mera, H.H. Hegazy, S. Alharthi, M.A. Amin, Study of narrow band gap double perovskites (Sr/Ba)2BB’O6 (B = In, Tl, B’ = Sb, Bi) for optical, thermoelectric, and mechanical properties. J. Mater. Today Commun. 31, 103547 (2022)

    Article  Google Scholar 

  39. G. Murtaza, T. Alshahrani, R.M.A. Khalil, Q. Mahmood, T.H. Flemban, H. Althib, A. Laref, Lead free double perovsites halides X2AgTlCl6 (X = Rb, Cs) for solar cells and renewable energy applications. J. Solid. State. Chem. 297, 121988 (2021)

    Article  Google Scholar 

  40. Q. Mahmood, T. Ghrib, A. Rached, A. Laref, M.A. Kamran, Structural, electronic, optical, and thermoelectric analysis of Rb/Cs2TeBr6 Vacancy ordered double perovskites. Mater. Sci. Semi. Proc. 112, 105009 (2020)

    Article  Google Scholar 

  41. A. Mera, T. Zelai, S.A. Rouf, N.A. Kattan, Q. Mahmood, First-principles calculations to investigate mechanical, thermoelectric, and optical performance of inorganic double perovskites Rb2AgAlZ6 (Z = Br, I) for energy harvesting. J. Mater. Res. Technol. 24, 5588–5597 (2023)

    Article  Google Scholar 

  42. S. Niaz, M.A. Khan, N.A. Noor, H. Ullah, R. Neffati, Bandgap tuning and thermoelectric characteristics of Sc-based double halide perovskites K2ScAgZ6 (Z = Cl, Br, I) for solar cells applications. J. Phys. Chem. Solids 174, 111115 (2023)

    Article  Google Scholar 

  43. N.A. Kattan, S.A. Rouf, N. Sfina, M.M. Al-Anazy, H. Ullah, A. Hakamy et al., Tuning of band gap by anion variation of double perovskites K2AgInX6 (X = Cl, Br) for solar cells and thermoelectric applications. J. Solid State Chem. 319, 123820 (2023)

    Article  Google Scholar 

  44. M. Hassan, I. Arshad, Q. Mahmood, Computational study of electronic, optical, and thermoelectric properties of X3PbO (X = Ca, Sr, Ba) anti-perovskites. Semicond. Sci. Technol 32, 115002 (2017)

    Article  ADS  Google Scholar 

  45. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128, 2093 (1962)

    Article  ADS  MATH  Google Scholar 

  46. V.B. Bobrov, S.A. Trigger, G.J.F. van Heijst, P.P.J.M. Schram, Kramers–Kronig relations for the dielectric function and the static conductivity of Coulomb systems. EPL 90, 10003 (2010)

    Article  ADS  Google Scholar 

  47. G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892–894 (2006)

    Article  ADS  Google Scholar 

  48. M.A. Amin, G. Nazir, Q. Mahmood, J. Alzahrani, N.A. Kattan, A. Mera, H. Mirza, A.M.S. Refar, A.A. Gobouri, T. Altalhi, Study of double perovskites X2InSbO6 (X = Sr, Ba) for renewable energy; alternative of organic–inorganic perovskites. J. Mater. Res. Technol. 18, 4403–4412 (2022)

    Article  Google Scholar 

  49. G.M. Mustafa, M. Hassan, N.M. Aloufi, S. Saba, S. Qaisi, Q. Mahmood, H. Albalawi, S. Bouzgarrou, H.H. Somaily, A. Mera, Half metallic ferroamgnetism, and transport properties of vacancy ordered double perovskites Rb2(Os/Ir)X6 (X = Cl, Br) for spintronic applications. Ceram. Int. 48, 23460–23467 (2022)

    Article  Google Scholar 

  50. Z.U. Abdin, I. Qasim, M. Rashid, A. Mera, B.U. Haq, Q. Mahmood, First principle study of optoelectronic and thermoelectric properties of (Cs/Rb) AuI3 for clean energy. Mater. Sci. Semicond. Process. 147, 106759 (2022)

    Article  Google Scholar 

  51. M. Sajjad, Q. Mahmood, N. Singh, J. Andreas Larsson, Ultralow lattice thermal conductivity in double perovskite Cs2PtI6: a promising thermoelectric material. ACS Appl. Energy Mater. 3(11), 11293–11299 (2020)

    Article  Google Scholar 

  52. G. Zhou, D. Wang, Few-quintuple Bi2Te3 nanofilms as potential thermoelectric materials. Sci. Rep. 5(1), 8099 (2015)

    Article  ADS  Google Scholar 

  53. D. Campi, L. Paulatto, G. Fugallo, F. Mauri, M. Bernasconi, First-principles calculation of lattice thermal conductivity in crystalline phase change materials: GeTe, Sb2Te3, and Ge2Sb2Te5. Phys. Rev. B 95(2), 024311 (2017)

    Article  ADS  Google Scholar 

  54. T. Charpin, A package for calculating elastic tensors of cubic phase using WIEN (Paris Laboratory of Geometrix) (2001)

  55. X. Ji, Y. Yu, J. Ji, J. Long, J. Chen, D. Liu, Theoretical studies of the pressure-induced phase transition and elastic properties of BeS. J. Alloys Compd. 623, 304–310 (2015)

    Article  Google Scholar 

  56. M. Roknuzzaman, K. Ostrikov, H. Wang, A. Du, T. Tesfamichael, Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations. Sci. Rep. 7, 14025 (2017)

    Article  ADS  Google Scholar 

  57. S. Tariq, A. Ahmed, S. Saad, S. Tariq, Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: a DFT study. AIP Adv. 5, 077111 (2015)

    Article  ADS  Google Scholar 

  58. Y.J. Hao, X.R. Chen, H.L. Cui, Y.L. Bai, First-principles calculations of elastic constants of c-BN. Phys. B Condens. Matter 382, 118–122 (2006)

    Article  ADS  Google Scholar 

  59. R. Singh, G. Balasubramanian, Impeding phonon transport through superlattices of organic–inorganic halide perovskites. RSC Adv. 7, 37015 (2017)

    Article  ADS  Google Scholar 

  60. M. Marathe, A. Grunebohm, T. Nishimatsu, P. Entel, C. Ederer, First-principles based calculation of the electrocaloric effect in BaTiO3: a comparison of direct and indirect methods. Phys. Rev. B 93, 054110 (2016)

    Article  ADS  Google Scholar 

  61. A.A. AlObaid, S.A. Rouf, T.I. Al-Muhimeed, A.I. Aljameel, S. Bouzgarrou, H.H. Hegazy et al., New lead-free double perovskites (Rb2GeCl/Br)6; a promising materials for renewable energy applications. Mater. Chem. Phys. 271, 124876 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R29), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. G. B. Ashiq or Hind Albalawi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashiq, M.G.B., Albalawi, H. Study of electronic, mechanical, thermoelectric and optical properties of K2ScAuZ6 (Z = Br, I) for energy harvesting. Eur. Phys. J. Plus 138, 501 (2023). https://doi.org/10.1140/epjp/s13360-023-04136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04136-5

Navigation