Skip to main content
Log in

A comprehensive thermodynamic model for temperature change in caloric effects

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Solid-state cooling based on caloric effects may be an alternative to conventional vapor-compression refrigeration systems. The adiabatic temperature change (\({\Delta T}_{S}\)) is one of the parameters that characterize the caloric effects; therefore, it is important to obtain the correct \({\Delta T}_{S}\) values and, whenever possible, to correlate this parameter with thermodynamic and microscopic quantities. In this work, we propose a comprehensive thermodynamic model that allows us to determine the adiabatic temperature change from non-adiabatic measurements of temperature change induced by a field change. Our model fits efficiently temperature versus time and temperature change versus the inverse of the field change rate data for three different materials presenting different caloric effects. The results indicate that the present model is a very useful and robust tool to obtain the correct \({\Delta T}_{S}\) values and to correlate \({\Delta T}_{S}\) with other thermodynamic quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during the current study are available from the corresponding author on reasonable request.]

References

  1. V.K. Pecharsky, K.A. Gschneidner Jr., Phys. Rev. Lett. 78(23), 4494 (1997)

    Article  ADS  Google Scholar 

  2. H. Wada, Y. Tanabe, Appl. Phys. Lett. 79(20), 3302 (2001)

    Article  ADS  Google Scholar 

  3. B. Li, J. Du, W.J. Ren, W.J. Hu, Q. Zhang, D. Li, Z.D. Zhang, Appl. Phys. Lett. 92, 242504 (2008)

    Article  ADS  Google Scholar 

  4. J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, I. Takeuchi, Appl. Phys. Lett. 101, 073904 (2012)

    Article  ADS  Google Scholar 

  5. A.M.G. Carvalho, J.C.G. Tedesco, M.J.M. Pires, M.E. Soffner, A.O. Guimarães, A.M. Mansanares, A.A. Coelho, Appl. Phys. Lett. 102, 192410 (2013)

    Article  ADS  Google Scholar 

  6. T. Samanta, P. Lloveras, A.U. Saleheen, D.L. Lepkowski, E. Kramer, I. Dubenko, P.W. Adams, D.P. Young, M. Barrio, J.L. Tamarit, N. Ali, S. Stadler, Appl. Phys. Lett. 112, 021907 (2018)

    Article  ADS  Google Scholar 

  7. J. He, Z. Wei, W. Sun, X. Lu, S. Ma, J. Liu, Intermetallics 139, 107348 (2021)

    Article  Google Scholar 

  8. A.S. Mischenko, Q. Zhang, J.F. Scott, R.W. Whatmore, N.D. Mathur, Science 311, 1270 (2006)

    Article  ADS  Google Scholar 

  9. B. Li, Y. Kawakita, S. Ohira-Kawamura, T. Sugahara, H. Wang, J. Wang, Y. Chen, S.I. Kawaguchi, S. Kawaguchi, K. Ohara, K. Li, D. Yu, R. Mole, T. Hattori, T. Kikuchi, S. Yano, Z. Zhang, W. Ren, S. Lin, O. Sakata, K. Nakajima, Z. Zhang, Nature 567, 506 (2019)

    Article  ADS  Google Scholar 

  10. J. Lin, P. Tong, K. Zhang, K. Tao, W. Lu, X. Wang, X. Zhang, W. Song, Y. Sun, Nat. Commun. 13, 596 (2022)

    Article  ADS  Google Scholar 

  11. C.A. Miliante, A.M. Christmann, R.P. Soares, J.R. Bocca, C.S. Alves, A.M.G. Carvalho, A.R. Muniz, J. Mater. Chem. A 10, 8344 (2022)

    Article  Google Scholar 

  12. P.J. von Ranke, B.P. Alho, R.M. Ribas, E.P. Nobrega, A. Caldas, V.S.R. de Sousa, M.V. Colaço, L.F. Marques, D.L. Rocco, P.O. Ribeiro, Phys. Rev. B 98, 224408 (2018)

    Article  ADS  Google Scholar 

  13. P. J. von Ranke, B. P. Alho, P. H. S. da Silva, R. M. Ribas, E. P. Nobrega, V. S. R. de Sousa, A. M. G. Carvalho, P. O. Ribeiro, Phys. Status Solid B, 2100108 (2021).

  14. M. Romanini, Y. Wang, K. Gürpinar, G. Ornelas, P. Lloveras, Y. Zhang, W. Zheng, M. Barrio, A. Aznar, A. Gràcia-Condal, B. Emre, O. Atakol, C. Popescu, H. Zhang, Y. Long, L. Balicas, J.L. Tamarit, A. Planes, M. Shatruk, L. Mañosa, Adv. Mater. 33, 2008076 (2021)

    Article  Google Scholar 

  15. W. Imamura, E.O. Usuda, E.S.N. Lopes, A.M.G. Carvalho, J. Mater. Sci. 57, 311 (2022)

    Article  ADS  Google Scholar 

  16. N.M. Bom, W. Imamura, E.O. Usuda, L.S. Paixão, A.M.G. Carvalho, ACS Macro Lett. 7, 31 (2017)

    Article  Google Scholar 

  17. A.M.G. Carvalho, W. Imamura, E.O. Usuda, N.M. Bom, Eur. Polym. J. 99, 212 (2018)

    Article  Google Scholar 

  18. E.O. Usuda, W. Imamura, N.M. Bom, L.S. Paixão, A.M.G. Carvalho, A.C.S. Appl, Polym. Mater. 1, 1991 (2019)

    Google Scholar 

  19. W. Imamura, E.O. Usuda, L.S. Paixão, N.M. Bom, A.M. Gomes, A.M.G. Carvalho, CJPS 38, 999 (2020)

    Google Scholar 

  20. N.M. Bom, E.O. Usuda, M.S. Gigliotti, D.J.M. Aguiar, W. Imamura, L.S. Paixão, A.M.G. Carvalho, CJPS 38, 769 (2020)

    Google Scholar 

  21. J.R. Bocca, S.L. Favaro, C.S. Alves, A.M.G. Carvalho, J.R. Barbosa Jr., A. Santos, F.C. Colman, W.A.S. Conceição, C. Caglioni, E. Radovanovic, Polym. Test. 100, 107251 (2021)

    Article  Google Scholar 

  22. N. Weerasekera, K.P.K. Ajjarapu, K. Sudan, G. Sumanasekera, K. Kate, B. Bhatia, Front. Energy Res. 10, 887006 (2022)

    Article  Google Scholar 

  23. A.M.G. Carvalho, C. Salazar Mejía, C.A. Ponte, L.E.L. Silva, J. Kaštil, J. Kamarád, A.M. Gomes, Appl. Phys. A 122, 246 (2016)

    Article  ADS  Google Scholar 

  24. S. Qian, L. Yuan, J. Yu, G. Yan, Appl. Phys. Lett. 111, 223902 (2017)

    Article  ADS  Google Scholar 

  25. M. Griffel, R.E. Skochdopole, F.H. Spedding, Phys. Rev. 93(4), 657 (1954)

    Article  ADS  Google Scholar 

  26. https://www.rsc.org/periodic-table/element/64/gadolinium

  27. D. Cong, W. Xiong, A. Planes, Y. Ren, L. Mañosa, P. Cao, Z. Nie, X. Sun, Z. Yang, X. Hong, Y. Wang, Phys. Rev. Lett. 122, 255703 (2019)

    Article  ADS  Google Scholar 

  28. A. Aznar, A. Gràcia-Condal, A. Planes, P. Lloveras, M. Barrio, J.-L. Tamarit, W. Xiong, D. Cong, C. Popescu, L. Mañosa, Phys. Rev. Mat. 3, 044406 (2019)

    Google Scholar 

  29. H. Ossmer, F. Lambrecht, M. Gültig, C. Chluba, E. Quandt, M. Kohl, Acta Mater. 81, 9 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (Proc. 163391/2020-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. G. Carvalho.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 54 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho, A.M.G., Imamura, W. A comprehensive thermodynamic model for temperature change in caloric effects. Eur. Phys. J. Plus 138, 420 (2023). https://doi.org/10.1140/epjp/s13360-023-04052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04052-8

Navigation