Skip to main content
Log in

Observational constraints on neutrino masses in rolling tachyon field model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the standard model of particles physics, neutrinos have no mass. In this model, there are three massless neutrino species that only interact through the weak force. Neutrinos can leave imprint in several cosmological data sets. Cosmological data provide an independent and powerful tool to tackle the absolute scale of neutrino and to study its properties. The observational measurements taken by the Planck satellite provide extremely tight upper bounds on the total neutrino mass scale \(\sum m_{\nu }< 0.12 \textrm{eV}\) \((95\%\) confidence level (CL)). In this paper, the constraints on the total neutrino mass \(\sum m_{\nu }\) and extra relativistic degrees of freedom \(N_{\textrm{eff}}\) in a rolling tachyon model, with steep runaway type of potentials non-minimally coupled to massive neutrino matter, are investigated. The observational data include the type Ia supernovae (SN) observation (Pantheon compilation and Union2 data), CC and combination of CMB + CC + Pantheon data that are used in this work. For CMB + CC + Pantheon data, we have found that the neutrino mass is closely constrained to \(\sum m_{\nu }< 0.273 \textrm{eV}\) \((95\%\) confidence level (CL)) which is in good agreement with the 2018 Planck results where the limit of the total neutrino mass is \(\sum m_{\nu }< 0.27 \textrm{eV}\)\(95\%\) CL TT, TE, EE + lowE + Lensing [CamSpec]), and we also find \(N_{\textrm{eff}}=3.29^{+0.05}_{-0.05}\) \(68\%\) CL which is in good agreement with the results of Planck with \(N_{\textrm{eff}}=3.27^{+0.15}_{-0.15}\)\(68\%\)CL TE, TT, EE, LowE + lensing + BAO + R18). In order to reconstruct the history of the universe, we reconstruct the deceleration parameter q(z) based on the best fitted parameters of the model. The evolution of the model shows that the universe start from radiation dominated epoch continues toward matter-dominated epoch at deceleration–acceleration transition \(z_{tr}=0.76,\) enters the acceleration phase and with current value \(q_{0}=-0.58\) and moves toward stable dark energy dominated. The obtained values of \(z_{tr}\) and \(q_{0}\) are in good agreement with observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

The manuscript has no associated data or the data will not be deposited.

References

  1. J. Lesgourgues, S. Pastor, Massive neutrinos and cosmology. Phys. Rept. 429, 307 (2006). arXiv:astro-ph/0603494

  2. M.C. Gonzalez-Garcia, M. Maltoni, Phenomenology with Massive Neutrinos. Phys. Rept. 460, 1 (2008). arXiv:0704.1800 [hep-ph]

  3. K.N. Abazajian et al. (Topical Conveners: K.N. Abazajian, J.E. Carlstrom, A.T. Lee), Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure, Astropart. Phys. 63, 66 (2015), arXiv:1309.5383 [astro-ph.CO]

  4. M. Kaplinghat, L. Knox, Y.-S. Song, Determining Neutrino Mass from the CMB Alone. Phys. Rev. Lett. 91, 241301 (2003). arXiv:astro-ph/0303344

  5. S. Pascoli, S.T. Petcov, T. Schwetz, The Absolute Neutrino Mass Scale, Neutrino Mass Spectrum, Majorana CP-Violation and Neutrinoless Double-Beta Decay. Nucl. Phys. B 734, 24 (2006). arXiv:hep-ph/0505226

  6. M. Lattanzi, M. Gerbino, Status of neutrino properties and future prospects - Cosmological and astrophysical constraints. Front. in Phys. 5, 70 (2018). arXiv:1712.07109 [astro-ph.CO]

  7. P.F. De Salas, S. Gariazzo, O. Mena, C.A. Ternes, M. Tortola, Neutrino mass ordering from oscillations and beyond: 2018 status and future prospects. Front. Astron. Space Sci. 5, 36 (2018). arXiv:1806.11051 [hep-ph]

  8. W. Hu, D.J. Eisenstein, M. Tegmark, Weighing neutrinos with galaxy surveys. Phys. Rev. Lett. 80, 5255 (1998)

    Article  ADS  Google Scholar 

  9. B.A. Reid, L. Verde, R. Jimenez, O. Mena, Robust neutrino constraints by combining low redshift observations with the CMB. JCAP 1001, 003 (2010)

    Article  ADS  Google Scholar 

  10. S. A. Thomas, F. B. Abdalla and O. Lahav, Upper bound of 0.28eV on the neutrino masses from the largest photometric redshift survey, Phys. Rev. Lett. 105, 031301 (2010)

  11. C. Carbone, L. Verde, Y. Wang, A. Cimatti, Neutrino constraints from future nearly all-sky spectroscopic galaxy surveys. JCAP 1103, 030 (2011)

    Article  ADS  Google Scholar 

  12. H. Li, X. Zhang, Constraining dynamical dark energy with a divergence-free parametrization in the presence of spatial curvature and massive neutrinos. Phys. Lett. B 713, 160 (2012)

    Article  ADS  Google Scholar 

  13. X. Wang, X.L. Meng, T.J. Zhang, H. Shan, Y. Gong, C. Tao, X. Chen, Y.F. Huang, Observational constraints on cosmic neutrinos and dark energy revisited. JCAP 1211, 018 (2012). https://doi.org/10.1088/1475-7516/2012/11/018

    Article  ADS  Google Scholar 

  14. Y.H. Li, S. Wang, X.D. Li, X. Zhang, Holographic dark energy in a universe with spatial curvature and massive neutrinos: a full Markov Chain Monte Carlo exploration. JCAP 1302, 033 (2013)

    Article  ADS  Google Scholar 

  15. B. Audren, J. Lesgourgues, S. Bird, M.G. Haehnelt, M. Viel, Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors. JCAP 1301, 026 (2013)

    Article  ADS  Google Scholar 

  16. S. Riemer-S\(\phi\)rensen, D. Parkinson and T. M. Davis, Combining Planck data with large scale structure information gives a strong neutrino mass constraint, Phys. Rev. D 89, 103505 (2014)

  17. A. Font-Ribera, P. McDonald, N. Mostek, B.A. Reid, H.J. Seo, A. Slosar, DESI and other dark energy experiments in the era of neutrino mass measurements. JCAP 1405, 023 (2014)

    Article  ADS  Google Scholar 

  18. J.F. Zhang, Y.H. Li, X. Zhang, Sterile neutrinos help reconcile the observational results of primordial gravitational waves from Planck and BICEP2. Phys. Lett. B 740, 359 (2015)

    Article  ADS  Google Scholar 

  19. J.F. Zhang, Y.H. Li, X. Zhang, Cosmological constraints on neutrinos after BICEP2. Eur. Phys. J. C 74, 2954 (2014)

    Article  ADS  Google Scholar 

  20. J.F. Zhang, J.J. Geng, X. Zhang, Neutrinos and dark energy after Planck and BICEP2: data consistency tests and cosmological parameter constraints. JCAP 1410(10), 044 (2014)

    Article  ADS  Google Scholar 

  21. N. Palanque-Delabrouille et al., Constraint on neutrino masses from SDSS-III/BOSS Ly\(\alpha\) forest and other cosmological probes. JCAP 1502(02), 045 (2015)

    Article  ADS  Google Scholar 

  22. C.Q. Geng, C.C. Lee, J.L. Shen, Matter power spectra in viable \(f(R)\) gravity models with massive neutrinos. Phys. Lett. B 740, 285 (2015)

    Article  ADS  MATH  Google Scholar 

  23. Y.H. Li, J.F. Zhang, X. Zhang, Probing \(f(R)\) cosmology with sterile neutrinos via measurements of scale-dependent growth rate of structure. Phys. Lett. B 744, 213 (2015)

    Article  ADS  Google Scholar 

  24. P.A.R. Ade et al., [Planck Collaboration], Planck 2015 results. XIII. cosmological parameters. Astron. Astrophys. 594, A13 (2016)

    Article  Google Scholar 

  25. J.F. Zhang, M.M. Zhao, Y.H. Li, X. Zhang, Neutrinos in the holographic dark energy model: constraints from latest measurements of expansion history and growth of structure. JCAP 1504, 038 (2015)

    Article  ADS  Google Scholar 

  26. C.Q. Geng, C.C. Lee, R. Myrzakulov, M. Sami, E.N. Saridakis, Observational constraints on varying neutrino-mass cosmology. JCAP 1601(01), 049 (2016)

    Article  ADS  Google Scholar 

  27. Y. Chen, L. Xu, Galaxy clustering, CMB and supernova data constraints on \(\varphi\)CDM model with massive neutrinos. Phys. Lett. B 752, 66 (2016)

    Article  ADS  Google Scholar 

  28. R. Allison, P. Caucal, E. Calabrese, J. Dunkley, T. Louis, Towards a cosmological neutrino mass detection. Phys. Rev. D 92(12), 123535 (2015)

    Article  ADS  Google Scholar 

  29. A.J. Cuesta, V. Niro, L. Verde, Neutrino mass limits: robust information from the power spectrum of galaxy surveys. Phys. Dark Univ. 13, 77 (2016)

    Article  Google Scholar 

  30. Y. Chen, B. Ratra, M. Biesiada, S. Li, Z.H. Zhu, Constraints on non-flat cosmologies with massive neutrinos after Planck 2015. Astrophys. J. 829(2), 61 (2016)

    Article  ADS  Google Scholar 

  31. M. Moresco, R. Jimenez, L. Verde, A. Cimatti, L. Pozzetti, C. Maraston, D. Thomas, Constraining the time evolution of dark energy, curvature and neutrino properties with cosmic chronometers. JCAP 1612(12), 039 (2016)

    Article  ADS  Google Scholar 

  32. J. Lu, M. Liu, Y. Wu, Y. Wang, W. Yang, Cosmic constraint on massive neutrinos in viable \(f(R)\) gravity with producing \(\Lambda\)CDM background expansion. Eur. Phys. J. C 76(12), 679 (2016)

    Article  ADS  Google Scholar 

  33. S. Kumar, R.C. Nunes, Probing the interaction between dark matter and dark energy in the presence of massive neutrinos. Phys. Rev. D 94(12), 123511 (2016)

    Article  ADS  Google Scholar 

  34. L. Xu, Q.G. Huang, Detecting the neutrinos mass hierarchy from cosmological data. Sci. China Phys. Mech. Astron. 61(3), 039521 (2018)

    Article  ADS  Google Scholar 

  35. S. Vagnozzi, E. Giusarma, O. Mena, K. Freese, M. Gerbino, S. Ho, M. Lattanzi, Unveiling \(\nu\) secrets with cosmological data: neutrino masses and mass hierarchy. Phys. Rev. D 96(12), 123503 (2017)

    Article  ADS  Google Scholar 

  36. X. Zhang, Weighing neutrinos in dynamical dark energy models. Sci. China Phys. Mech. Astron. 60(6), 060431 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  37. C.S. Lorenz, E. Calabrese, D. Alonso, Distinguishing between neutrinos and time-varying dark energy through cosmic time. Phys. Rev. D 96(4), 043510 (2017)

    Article  ADS  Google Scholar 

  38. M.M. Zhao, J.F. Zhang, X. Zhang, Measuring growth index in a universe with massive neutrinos: a revisit of the general relativity test with the latest observations. Phys. Lett. B 779, 473 (2018)

    Article  ADS  Google Scholar 

  39. S. Vagnozzi, S. Dhawan, M. Gerbino, K. Freese, A. Goobar, O. Mena, Constraints on the sum of the neutrino masses in dynamical dark energy models with \(w(z) \ge -1\) are tighter than those obtained in \(\Lambda\)CDM. Phys. Rev. D 98, 083501 (2018). arXiv:1801.08553 [astro-ph.CO]

  40. L.F. Wang, X.N. Zhang, J.F. Zhang, X. Zhang, Impacts of gravitational-wave standard siren observation of the Einstein Telescope on weighing neutrinos in cosmology. Phys. Lett. B 782, 87 (2018)

    Article  ADS  Google Scholar 

  41. E.K. Li, H. Zhang, M. Du, Z.H. Zhou, L. Xu, Probing the Neutrino Mass Hierarchy beyond \(\Lambda\)CDM Model. JCAP 1808, 042 (2018). https://doi.org/10.1088/1475-7516/2018/08/042

    Article  ADS  Google Scholar 

  42. S. Wang, Y.F. Wang, D.M. Xia, Constraints on the sum of neutrino masses using cosmological data including the latest extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample. Chin. Phys. C 42(6), 065103 (2018). https://doi.org/10.1088/1674-1137/42/6/065103

    Article  ADS  Google Scholar 

  43. L. Feng, J.F. Zhang, X. Zhang, Search for sterile neutrinos in a universe of vacuum energy interacting with cold dark matter. Phys. Dark Univ. 23, 100261 (2019). https://doi.org/10.1016/j.dark.2018.100261

    Article  Google Scholar 

  44. M.M. Zhao, Y.H. Li, J.F. Zhang, X. Zhang, Constraining neutrino mass and extra relativistic degrees of freedom in dynamical dark energy models using Planck 2015 data in combination with low-redshift cosmological probes: basic extensions to \(\Lambda\)CDM cosmology. Mon. Not. R. Astron. Soc. 469(2), 1713 (2017). https://doi.org/10.1093/mnras/stx978

    Article  ADS  Google Scholar 

  45. X. Zhang, Impacts of dark energy on weighing neutrinos after Planck 2015. Phys. Rev. D 93(8), 083011 (2016). https://doi.org/10.1103/PhysRevD.93.083011

    Article  ADS  Google Scholar 

  46. Q.G. Huang, K. Wang, S. Wang, Constraints on the neutrino mass and mass hierarchy from cosmological observations. Eur. Phys. J. C 76(9), 489 (2016). https://doi.org/10.1140/epjc/s10052-016-4334-z

    Article  ADS  Google Scholar 

  47. S. Wang, Y.F. Wang, D.M. Xia, X. Zhang, Impacts of dark energy on weighing neutrinos: mass hierarchies considered. Phys. Rev. D 94(8), 083519 (2016). https://doi.org/10.1103/PhysRevD.94.083519

    Article  ADS  Google Scholar 

  48. S. Vagnozzi, Cosmological searches for the neutrino mass scale and mass ordering, arXiv:1907.08010 [astro-ph.CO]

  49. E. Giusarma, M. Gerbino, O. Mena, S. Vagnozzi, S. Ho, K. Freese, Improvement of cosmological neutrino mass bounds. Phys. Rev. D 94(8), 083522 (2016). https://doi.org/10.1103/PhysRevD.94.083522

    Article  ADS  Google Scholar 

  50. Z. Liu, H. Miao, Update constraints on neutrino mass and mass hierarchy in light of dark energy models, Int. J. Mod. Phys. D 29, 2050088 (2020) arXiv:2002.05563

  51. S.R. Choudhury, S. Choubey, Updated Bounds on Sum of Neutrino Masses in Various Cosmological Scenarios. JCAP 1809, 017 (2018). https://doi.org/10.1088/1475-7516/2018/09/017

    Article  ADS  Google Scholar 

  52. R. Allahverdi, Y. Gao, B. Knockel, S. Shalgar, Indirect signals from solar dark matter annihilation to long-lived right-handed neutrinos. Phys. Rev. D 95(7), 075001 (2017). https://doi.org/10.1103/PhysRevD.95.075001

    Article  ADS  Google Scholar 

  53. J. Han, R. Wang, W. Wang, X.N. Wei, Neutrino mass matrices with one texture equality and one vanishing neutrino mass. Phys. Rev. D 96(7), 075043 (2017). https://doi.org/10.1103/PhysRevD.96.075043

    Article  ADS  Google Scholar 

  54. X.Y. Zhou, J.H. He, Weighing neutrinos in \(f(R)\) gravity in light of BICEP2. Commun. Theor. Phys. 62, 102 (2014). https://doi.org/10.1088/0253-6102/62/1/18

    Article  ADS  Google Scholar 

  55. Y. Huo, T. Li, Y. Liao, D.V. Nanopoulos, Y. Qi, Constraints on neutrino velocities revisited. Phys. Rev. D 85, 034022 (2012). https://doi.org/10.1103/PhysRevD.85.034022

    Article  ADS  Google Scholar 

  56. J.F. Zhang, B. Wang, X. Zhang, Forecast for weighing neutrinos in cosmology with SKA. Sci. China Phys. Mech. Astron. 63(8), 280411 (2020). https://doi.org/10.1007/s11433-019-1516-y

    Article  ADS  Google Scholar 

  57. A.D. Rivero, V. Miranda, C. Dvorkin, Observable Predictions for Massive-Neutrino Cosmologies with Model-Independent Dark Energy. Phys. Rev. D 100(6), 063504 (2019). https://doi.org/10.1103/PhysRevD.100.063504

    Article  ADS  Google Scholar 

  58. R.Y. Guo, Y.H. Li, J.F. Zhang, X. Zhang, Weighing neutrinos in the scenario of vacuum energy interacting with cold dark matter: application of the parameterized post-Friedmann approach. JCAP 1705, 040 (2017). https://doi.org/10.1088/1475-7516/2017/05/040

    Article  ADS  Google Scholar 

  59. L. Feng, D.Z. He, H.L. Li, J.F. Zhang, X. Zhang, Constraints on active and sterile neutrinos in an interacting dark energy cosmology. Sci. China-Phys. Mech. Astron. 63, 290404 (2020)

    Article  ADS  Google Scholar 

  60. R.Y. Guo, J.F. Zhang, X. Zhang, Exploring neutrino mass and mass hierarchy in the scenario of vacuum energy interacting with cold dark matte. Chin. Phys. C 42(9), 095103 (2018). https://doi.org/10.1088/1674-1137/42/9/095103

    Article  ADS  Google Scholar 

  61. L. Feng, H.L. Li, J.F. Zhang, X. Zhang, Exploring neutrino mass and mass hierarchy in interacting dark energy models. Sci. China Phys. Mech. Astron. 63(2), 220401 (2020). https://doi.org/10.1007/s11433-019-9431-9

    Article  ADS  Google Scholar 

  62. A.G. Riess et al., A determination of the Hubble constant with the Hubble space telescope and wide field camera 3. Astrophys. J. 730, 119 (2011). [arXiv:astro-ph/1103.2976]

    Article  ADS  Google Scholar 

  63. W.L. Freedman et al., Carnegie Hubble program: a mid-infrared calibration of the Hubble constant. Astrophys. J. 758, 24 (2012). [arXiv:astro-ph/1208.3281]

    Article  ADS  Google Scholar 

  64. S.H. Suyu, M.W. Auger, S. Hilbert et al., Two accurate time-delay distances from strong lensing: implications for cosmology. Astrophys. J. 766, 70 (2013). [arXiv:astro-ph/1208.6010]

    Article  ADS  Google Scholar 

  65. P.J.E. Peebles, B. Ratra, The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003). [arXiv:astro-ph/0207347]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. E.J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006). [arXiv:hepth/0603057]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. A.G. Riess, S. Casertano, W. Yuan, J.B. Bowers, L. Macri, J.C. Zinn, D. Scolnic, Cosmic distances calibrated to 1% precision with Gaia EDR3 parallaxes and Hubble space telescope photometry of 75 milky way cepheids confirm tension with LambdaCDM. Astrophys. J. Lett. 908, L6 (2021). arXiv:2012.08534 [astro-ph.CO]

    Article  ADS  Google Scholar 

  68. M. Asgari et al., (KiDS), KiDS-1000 cosmology: cosmic shear constraints and comparison between two point statistics. Astron. Astrophys. 645, A104 (2021). arXiv:2007.15633 [astro-ph.CO]

    Article  Google Scholar 

  69. E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D.F. Mota, A.G. Riess, and J. Silk, In the Realm of the Hubble tension - a Review of Solutions, Class. Quant. Grav. 38, 153001 (2021), arXiv:2103.01183 [astroph.CO]

  70. S. Vagnozzi, New physics in light of the \({H_0}\) tension: an alternative view. Phys. Rev. D 102, 023518 (2020). arXiv:1907.07569 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  71. A. Sen, Tachyon matter. JHEP 0204, 048 (2002). arXiv: hep-th/0203265

    Article  ADS  Google Scholar 

  72. T. Padmanabhan, T.R. Choudhury, Can the clustered dark matter and the smooth dark energy arise from the same scalar field ?, Phys. Rev. D 66, 081301 (2002) arXiv:hep-th/0205055

  73. Y.-S. Piao, R.-G. Cai, X.-M. Zhang, Y.-Z. Zhang, Assisted Tachyonic inflation. Phys. Rev. D 66, 121301 (2002). arXiv:hep-ph/0207143

    Article  ADS  Google Scholar 

  74. J.S. Bagla, H.K. Jassal, T. Padmanabhan, Cosmology with tachyon field as dark energy. Phys. Rev. D 67, 063504 (2003). arXiv:astro-ph/0212198

    Article  ADS  Google Scholar 

  75. V.K. Shchigolev, M.P. Rotova, Cosmological model of interacting Tachyon field. Mod. Phys. Lett. A 27, 1250086 (2012). arXiv:1203.5030 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  76. V.K. Shchigolev, M.P. Rotova, Modelling Tachyon cosmology with non-minimal derivative coupling to gravity. Grav. Cosmol. 18, 88 (2012). arXiv:1105.4536 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  77. P.P. Avelino, L. Losano, J.J. Rodrigues, Quintessence and tachyon dark energy models with a constant equation of state parameter. Phys. Lett. B 699, 10 (2011). arXiv:1103.1384 [astro-ph.CO]

    Article  ADS  Google Scholar 

  78. G.W. Gibbons, Cosmological evolution of the rolling Tachyon, Phys. Lett. B 537, 1 (2002), arXiv:hepth/0204008

  79. E.M. Teixeira, A. Nunes, N.J. Nunes, Conformally coupled Tachyonic dark energy. Phys. Rev. D 100, 043539 (2019). arXiv:1903.06028 [gr-qc]

    Article  ADS  Google Scholar 

  80. G.W. Gibbons, Thoughts on Tachyon cosmology. Class. Quant. Grav. 20, S321 (2003). arXiv:hep-th/0301117

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. E.J. Copeland, M.R. Garousi, M. Sami, S. Tsujikawa, What is needed of a tachyon if it is to be the dark energy?, Phys. Rev. D 71, 043003 (2005), arXiv:hepth/0411192

  82. A. Banijamali, S. Bellucci, B. Fazlpour, M. Solbi, Observational constraints on tachyonic chameleon dark energy model. Gen. Rel. Grav. 49, 103 (2017)

    Article  ADS  Google Scholar 

  83. A. Sen, Field theory of Tachyon matter, Mod. Phys. Lett. A 17, 1797 (2002), arXiv:hepth/0204143

  84. A. Banijamali, B. Fazlpour, Tachyonic Teleparallel Dark Energy, Astrophys. Space Sci. 342, 229 (2012), arXiv:1206.3580 [physics.gen-ph]

  85. S. Bahamonde, M. Marciu, J.L. Said, Generalized Tachyonic teleparallel cosmology. Eur. Phys. J. C 79, 324 (2019). arXiv:1901.04973 [gr-qc]

    Article  ADS  Google Scholar 

  86. A. Rezaei Akbarieh, Y. Izadi, Tachyon inflation in teleparallel gravity, Eur. Phys. J. C 79, 366 (2019), arXiv:1812.06649 [gr-qc]

  87. H. Motavalli, A.R. Akbarieh, M. Nasiry, Dark energy cosmology with tachyon field in teleparallel gravity. J. Exp. Theor. Phys. 123, 33 (2016)

    Article  ADS  MATH  Google Scholar 

  88. B. Fazlpour, A. Banijamali, Dynamics of generalized Tachyon field in teleparallel gravity. Adv. High Energy Phys. 2015, 283273 (2015). arXiv:1408.0203 [gr-qc]

    Article  MATH  Google Scholar 

  89. A. Behnaz Fazlpour, Banijamali, non-minimally coupled Tachyon field in teleparallel gravity. Adv. High Energy Phys. 2014, 631630 (2014)

    Google Scholar 

  90. G. Otalora, Cosmological dynamics of Tachyonic teleparallel dark energy. Phys. Rev. D 88, 063505 (2013). arXiv:1305.5896 [gr-qc]

    Article  ADS  Google Scholar 

  91. S. Bahamonde, K.F. Dialektopoulos, C. EscamillaRivera, G. Farrugia, V. Gakis, M. Hendry, M. Hohmann, J. L. Said, J. Mifsud, E. Di Valentino, Teleparallel gravity: from theory to cosmology (2021), arXiv:2106.13793 [gr-qc]

  92. L.R.W. Abramo, F. Finelli, Cosmological dynamics of the tachyon with an inverse power-law potential. Phys. Lett. B 575, 165 (2003). arXiv:astro-ph/0307208

    Article  ADS  MATH  Google Scholar 

  93. I. Quiros, T. Gonzalez, D. Gonzalez, Y. Napoles, Study Of Tachyon dynamics for broad classes of potentials. Class. Quant. Grav. 27, 215021 (2010). arXiv:0906.2617 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. W. Fang, H.-Q. Lu, Dynamics of Tachyon and phantom field beyond the inverse square potentials. Eur. Phys. J. C 68, 567 (2010). arXiv:1007.2330 [hep-th]

    Article  ADS  Google Scholar 

  95. M.W. Hossain, R. Myrzakulov, M. Sami, E.N. Saridakis, Variable gravity: a suitable framework for quintessential inflation. Phys. Rev. D 90, 023512 (2014)

    Article  ADS  Google Scholar 

  96. S. Ahmad, N. Myrzakulov, R. Myrzakulov, Tachyon field non-minimally coupled to massive neutrino matter. JCAP 07, 032 (2016)

    Article  ADS  Google Scholar 

  97. R. Amanullah et al., Spectra and light curves of six type Ia supernovae at 0.511 \(<\) z \(<\) 1.12 and the Union2 compilation, Astrophys. J. 716, 712 (2010) [arXiv:1004.1711 [astro-ph.CO]]

  98. D.M. Scolnic et al., The complete light-curve sample of spectroscopically confirmed type Ia supernovae from pan-STARRS1 and cosmological constraints from the combined pantheon sample, ApJ, 859, 101 (2018) arXiv:1710.00845

  99. H. Yu, B. Ratra, F.-Y. Wang, Hubble parameter and baryon acoustic oscillation measurement constraints on the hubble constant, the deviation from the spatially-flat? CDM model, the deceleration-acceleration transition redshift, and spatial curvature. ApJ 856, 3 (2018)

    Article  ADS  Google Scholar 

  100. J.R. Bond, G. Efstathiou, M. Tegmark, Forecasting Cosmic parameter errors from microwave background anisotropy experiments. Mon. Not. R. Astron. Soc. 291, L33–L41 (1997)

    ADS  Google Scholar 

  101. Y. Wang, P. Mukherjee, Robust dark energy constraints from supernovae, galaxy clustering, and 3 yr Wilkinson microwave anisotropy probe observations. ApJ 650, 1 (2006)

    Article  ADS  Google Scholar 

  102. F. Piazza, S. Tsujikawa, Dilatonic ghost condensate as dark energy. JCAP 0407, 004 (2004)

    Article  ADS  Google Scholar 

  103. L. Amendola, Coupled quintessence. Phys. Rev. D 62, 043511 (2000)

    Article  ADS  Google Scholar 

  104. J.P. Kneller, L.E. Strigari, Inverse power law quintessence with non-tracking initial conditions. Phys. Rev. D 68, 083517 (2003). ([astro-ph/0302167])

    Article  ADS  Google Scholar 

  105. E.N. Saridakis, Phantom evolution in power-law potentials. Nucl. Phys. B 819, 116 (2009). [arXiv:0902.3978]

    Article  ADS  MATH  Google Scholar 

  106. S. Tsujikawa, M. Sami, A unified approach to scaling solutions in a general cosmological background. Phys. Lett. B 603, 113 (2004)

    Article  ADS  Google Scholar 

  107. E. Komatsu et al., Five-year wilkinson microwave anisotropy probe* observations: likelihoods and parameters from the Wmap data. Astrophys. J. Suppl. 180, 306–329 (2009)

    Article  ADS  Google Scholar 

  108. F. Guillermo, A.Z. Chacko, A. Dev, P. Du, V. Poulin, Y. Tsai, Improved cosmological constraints on the neutrino mass and lifetime. JHEP 08, 076 (2022)

    Google Scholar 

  109. N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, A and A 641, A6 (2020), [arXiv:1807.06209 [astro-ph.CO]]

  110. H.R. Amiri, A. Salehi, A.H. Noroozi, Constraining neutrino mass in dark energy dark matter interaction and comparison with 2018 Planck results. Eur. Phys. J. C 81, 479 (2021)

    Article  ADS  Google Scholar 

  111. Eleonora Di Valentino, Supriya Pan, Weiqiang Yang, Luis A. Anchordoqui, Touch of Neutrinos on the Vacuum Metamorphosis: is the H0 Solution Back. Phys. Rev. D 103, 123527 (2021)

    Article  ADS  Google Scholar 

  112. A. Sandage, Physics Today, February 23, 34 (1970)

  113. O. Farooq, F.R. Madiyar, S. Crandall, B. Ratra, Hubble parameter measurement constraints on the redshift of the deceleration-acceleration transition, dynamical dark energy, and space curvature. Astrophys. J. 835, 26 (2017)

    Article  ADS  Google Scholar 

  114. A. Hernández-Almada, G. Leon, J. Magaña, M.A. García-Aspeitia, V. Motta, Emmanuel N. Saridakis, Kuralay Yesmakhanova, Kaniadakis holographic dark energy: observational constraints and global dynamics, Mon. Not. R. Astron. Soc. 511 (2022) 4147-4158, arXiv:2111.00558]

  115. J.-Q. Xia, V. Vitagliano, S. Liberati, M. Viel, Cosmography beyond standard candles and rulers. Phys. Rev. D. 85, 043520 (2012)

    Article  ADS  Google Scholar 

  116. A. Salehi, M.R. Setare, A. Alaii, Reconstructing cosmographic parameters from different cosmological models: case study. Interacting new generalized Chaplygin gas model. Eur. Phys. J. C 78, 495 (2018)

    Article  ADS  Google Scholar 

  117. R. Fardon, A.E. Nelson, N. Weiner, Dark energy from mass varying neutrinos. JCAP 0410, 005 (2004)

    Article  ADS  Google Scholar 

  118. A.W. Brookfield, C. van de Bruck, D.F. Mota, D. Tocchini-Valentini, Cosmology with massive neutrinos coupled to dark energy. Phys. Rev. Lett. 96, 061301 (2006)

    Article  ADS  Google Scholar 

  119. F.N. Chamings, A. Avgoustidis, E.J. Copeland, A.M. Green, B. Li, Early dark energy constraints on growing neutrino quintessence cosmologies. Phys. Rev. D 100, 043525 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  120. C. Wetterich, The Cosmon model for an asymptotically vanishing time dependent cosmological ‘constant’. Astron. Astrophys. 301, 321–328 (1995). arXiv:hep-th/9408025

    ADS  Google Scholar 

  121. Luca Amendola, Marco Baldi, Christof Wetterich, Quintessence cosmologies with a growing matter component. Phys. Rev. D 78, 023015 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Salehi.

Appendix

Appendix

Figures 4, 5 and 6 show the one-dimensional likelihood for parameters \(\sum m_{\nu },N_{\textrm{eff}},h,\) respectively.

Fig. 4
figure 4

One-dimensional likelihood for \(\sum m_{\nu }\) using Union2, Pantheon and CC data

Fig. 5
figure 5

One-dimensional likelihood for \(N_{\textrm{eff}}\) using Union2, Pantheon, CC and CMB+CC+Pantheon data

Fig. 6
figure 6

One-dimensional likelihood for parameter h using Union2, Pantheon, CC and CMB+CC+Pantheon data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazvand, P., Salehi, A. & Sepahvand, R. Observational constraints on neutrino masses in rolling tachyon field model. Eur. Phys. J. Plus 138, 448 (2023). https://doi.org/10.1140/epjp/s13360-023-04046-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04046-6

Navigation