Skip to main content
Log in

Properties of black hole vortex in Einstein’s gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate the influence of the matter field and the gauge field on the metric functions of the AdS\(_3\) spacetime of the Maxwell–Higgs model. By considering a matter field with a solitonic profile with the ability to adjust the field variable from kink to compact-like configurations, the appearance of black hole solutions is noticed for an event horizon at \(r_{+} \approx 1.5\). An interesting result is displayed when analyzing the influence of matter field compactification on the metric functions. As we obtain compact-like field configurations, the metric functions tend to a “linearized behavior.” However, the compactification of the field does not change the structure of the horizon of the magnetic black hole vortex. With the ADM formalism, the mass of the black hole vortex is calculated, and its numerical results are presented. By analyzing the so-called ADM mass, it is observed that the mass of the black hole vortex increases as the cosmological constant becomes more negative, and this coincides with the vortex core becoming smaller. Nonetheless, this mass tends to decrease as the solitonic profile of the matter field becomes more compacted. Then, the black hole temperature study is performed using the tunneling formalism. In this case, it is perceived that the cosmological constant, and the \(\alpha\)-parameter, will influence the Bekenstein–Hawking temperature. In other words, the temperature of the structure increases as these parameters increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript have associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

Notes

  1. The term compact-like refers to solitonic field configurations with a finite wavelength [43]. Generally, one uses compact-like structures in describing topological structures associated with particles and cosmological objects, see Refs. [43, 44].

  2. One can verify this statement by performing an analytical analysis around the origin, i.e., \(r=0\). In this case, we obtain \(\lim _{r\rightarrow 0}A(r)\simeq -\varLambda r^2+\mathcal {O}(r^2)\).

  3. One verifies this analysis in Sect. 2.2.1

References

  1. A. Abrikosov, Sov. Phys. JETP 32, 1442 (1957)

    Google Scholar 

  2. H. Nielsen, P. Olesen, Nucl. Phys. B 61, 45 (1973)

    Article  ADS  Google Scholar 

  3. K.M. Lee, Phys. Rev. D 49, 4265 (1994)

    Article  ADS  Google Scholar 

  4. R. Casana, M.M. Ferreira Jr., E. da Hora, C. Miller, Phys. Lett. B 718, 620 (2012)

    Article  ADS  Google Scholar 

  5. F.C.E. Lima, C.A.S. Almeida, Eur. Phys. J. C 81, 1044 (2021)

    Article  ADS  Google Scholar 

  6. F.C.E. Lima, A Yu. Petrov, C.A.S. Almeida, Phys. Rev. D 103, 096019 (2021)

    Article  ADS  Google Scholar 

  7. C. Adam, P. Klimas, J. Sánchez-Guillén, A. Wereszczuński, J. Phys. A: Math. Theor. 42, 135401 (2009)

    Article  ADS  Google Scholar 

  8. C. Kim, Y. Kim, Phys. Rev. D 50, 1040 (1994)

    Article  ADS  Google Scholar 

  9. F.C.E. Lima, C.A.S. Almeida, Ann. Phys. 434, 168648 (2021)

    Article  Google Scholar 

  10. Z.F. Ezawa, Quantum Hall Effects, 1st edn. (World Scientific, Singapore, 2000)

    Book  MATH  Google Scholar 

  11. F.S. Nogueira, Z. Nussinov, J. van den Brink, Phys. Rev. Lett. 121, 227001 (2018)

    Article  ADS  Google Scholar 

  12. F.C.E. Lima, C.A.S. Almeida, Europhys. Lett. 131, 31003 (2020)

    Article  ADS  Google Scholar 

  13. F.C.E. Lima, A Yu. Petrov, C.A.S. Almeida, Phys. Rev. D 105, 056005 (2022)

    Article  ADS  Google Scholar 

  14. J. Han, Y. Lee, J. Sohn, Calc. Var. 60, 94 (2021)

    Article  Google Scholar 

  15. H.Y. Huang, Y. Lee, S.H. Moon, J. Differen. Equ. 309, 1–29 (2022)

    Article  ADS  Google Scholar 

  16. H.S. Ramadhan, Phys. Lett. B 758, 140 (2016)

    Article  ADS  Google Scholar 

  17. D. Bazeia, Phys. Rev. D 46, 1879 (1992)

    Article  ADS  Google Scholar 

  18. D. Bazeia, E. da Hora, R. Menezes, H.P. de Oliveira, C. dos Santos, Phys. Rev. D 81, 125016 (2010)

    Article  ADS  Google Scholar 

  19. N. Manton, P. Sutcliffe, Topological solitons (Cambridge University Press, Cambridge, England, 2004)

    Book  MATH  Google Scholar 

  20. A. Vilenkin, E.P.S. Shellard, Cosmic Strings and other topological defects (Cambridge University Press, Cambridge, England, 2000)

    MATH  Google Scholar 

  21. J. Albert, J. High Energ. Phys. 09, 012 (2021)

    Article  ADS  Google Scholar 

  22. G. Dvali, F. Kühnel, M. Zantedeschi, Phys. Rev. Lett. 129, 061302 (2022)

    Article  ADS  Google Scholar 

  23. V.P. Frolov, A. Zelnikov, Introductions to Black Hole Physics (Oxford University Press, Oxford, New York, 2011)

    Book  MATH  Google Scholar 

  24. K. Akiyama, A. Alberdi et al., Astrophys. J. Lett. 875, L4 (2019)

    Article  ADS  Google Scholar 

  25. W. Rindler, Relativity: Special, General and Cosmological, 2nd edn. (Oxford University Press, Oxford, New York, 2006)

    MATH  Google Scholar 

  26. J. Oppenheimer, H. Snyder, Phys. Rev. 56, 455 (1939)

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Cardoni, P. Pani, M. Serra, J. High Energ. Phys. 2010, 91 (2010)

    Article  Google Scholar 

  28. J.D. Bekenstein, Phys. Rev. Lett. 28, 452 (1972)

    Article  ADS  Google Scholar 

  29. J.D. Bekenstein, Phys. Rev. D 51, 6608 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  30. C. Teitelboim, Phys. Rev. D 5, 2941 (1972)

    Article  ADS  Google Scholar 

  31. A. Edery, J. High Energ. Phys. 01, 166 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  32. S. Deser, R. Jackiw, G. ’t Hooft, Ann. Phys. 152, 220 (1984)

    Article  ADS  Google Scholar 

  33. M. Bañados, C. Teitelboim, J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Bañados, M. Henneaux, C. Teitelboim, J. Zanelli, Phys. Rev. D 48, 1506 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  35. D.A. Gomes, R.V. Maluf, C.A.S. Almeida, Ann. Phys. 418, 168198 (2020)

    Article  Google Scholar 

  36. J.M. Bardeen, B. Carter, S.W. Hawking, Comm. Math. Phys. 31, 161 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  37. J.M. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  38. E. Witten, Nucl. Phys. B 311, 46 (1988)

    Article  ADS  Google Scholar 

  39. E. Witten, Nucl. Phys. B 323, 113 (1989)

    Article  ADS  Google Scholar 

  40. S. Carlip, Lectures in \((2+1)\)-dimensional gravity. J. Korean Phys. Soc. 28, S447 (1995)

    Google Scholar 

  41. S. Carlip, Class. Quant. Grav. 12, 2853 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  42. D. Bazeia, L. Losano, M.A. Marques, R. Menezes, Phys. Lett. B 736, 515 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  43. F.C.E. Lima, D.A. Gomes, C.A.S. Almeida, Ann. Phys. 422, 168315 (2020)

    Article  Google Scholar 

  44. P. Rosenau, J.M. Hyman, Phys. Rev. Lett. 70, 564 (1993)

    Article  ADS  Google Scholar 

  45. F.C.E. Lima, C.A.S. Almeida, Phys. Lett. B 829, 137042 (2022)

    Article  Google Scholar 

  46. R. Arnowitt, S. Deser, C.W. Misner, Phys. Rev. 116, 1322 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  47. G. Shäfer, Ann. Phys. 161, 81 (1985)

    Article  ADS  Google Scholar 

  48. J. Steinhoff, G. Schäfer, S. Hergt, Phys. Rev. D 77, 104018 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  49. E. Poisson, A relativist’s toolkit (Cambridge University Press, Cambridge, U.K., 2004)

    Book  MATH  Google Scholar 

  50. L.F. Abbott, S. Deser, Nucl Phys. B 195, 76 (1982)

    Article  ADS  Google Scholar 

  51. K. Srinivasan, T. Padmanabhan, Phys. Rev. D 60, 024007 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  52. M. Angheben, M. Nadalini, L. Vanzo, S. Zerbini, J. High Energ. Phys. 05, 014 (2005)

    Article  ADS  Google Scholar 

  53. R. Kerner, R.B. Mann, Phys. Rev. D 73, 104010 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  54. P. Mitra, Phys. Lett. B 648, 240–242 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  55. E.T. Akhmedov, V. Akhmedova, D. Singleton, Phys. Lett. B 642, 124–128 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  56. Q.-Q. Jiang, S.-Q. Wu, X. Cai, Phys. Rev. D 73, 064003 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  57. R. Kerner, R.B. Mann, Class. Quant. Grav. 25, 095014 (2008)

    Article  ADS  Google Scholar 

  58. M.S. Ma, R. Zhao, Class. Quant. Grav. 31, 245014 (2014)

    Article  ADS  Google Scholar 

  59. R.V. Maluf, J.C.S. Neves, Phys. Rev. D 97, 104015 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  60. D.A. Gomes, F.C.E. Lima, C.A.S. Almeida, Ann. Phys. 428, 168436 (2021)

    Article  Google Scholar 

  61. C.A.S. Silva, F.A. Brito, Phys. Lett. B 725, 456 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  62. D.A. Gomes, R.V. Maluf, C.A.S. Almeida, Ann. Phys. 418, 168198 (2020)

    Article  Google Scholar 

  63. J.J. Sakurai, J. Napolitano, Modern Quantum Mechanics, 2nd edn. (Addison-Wesley, San Francisco, CA, 1994)

    MATH  Google Scholar 

  64. R.B. Mann, S.N. Solodukhin, Phys. Rev. D 55, 3622 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  65. J. Oliva, D. Tempo, R. Troncoso, J. High Energ. Phys. 07, 011 (2009). https://doi.org/10.1088/1126-6708/2009/07/011

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C. A. S. Almeida thanks to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grant No. 309553/2021-0. F. C. E. Lima is grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), No. 88887.372425/2019-00. The authors thank the referee for his valuable review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. S. Almeida.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, F.C.E., Moreira, A.R.P. & Almeida, C.A.S. Properties of black hole vortex in Einstein’s gravity. Eur. Phys. J. Plus 138, 429 (2023). https://doi.org/10.1140/epjp/s13360-023-04036-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04036-8

Navigation