Skip to main content

Advertisement

Log in

Hydrothermal synthesis and photocatalytic performance of Dy2O3/Mn nanostructures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Semiconductor photocatalysts have been widely used to catalyse photochemical reactions for the remediation of wastewater contaminated with organic dyes. This study aimed to synthesise and characterise manganese-doped Dy2O3 (Dy2O3/Mn) nanostructures as possible catalysts with improved photocatalytic properties. A low-cost hydrothermal method was used to fabricate materials with optimal morphological and structural properties. Before characterisation, Dy2O3/Mn nanostructures were subjected to heat treatments in the range 300–600 °C. X-ray diffraction analysis revealed that all samples exhibited a cubic phase structure; the crystallite size varied between 30.7 and 40.2 nm with the calcination temperature. Scanning electron microscopy, energy-dispersive spectroscopy, and Fourier transform infrared spectroscopy were used to examine the morphology and chemical content of the nanostructures, and the efficacy of the elaboration approach was validated. Diffuse reflectance spectroscopy demonstrated the visible-light absorption of the samples, and the bandgap energy was determined to be approximately 2.9 eV. Methylene blue (MB) dye was used to examine the photocatalytic activity of the Dy2O3/Mn nanostructures under visible-light irradiation. After 360 min, 92% of MB was degraded. The doping of Dy2O3 with Mn improved both the photocatalytic activity and the overall properties of the catalyst. Therefore, Dy2O3/Mn nanostructures could replace current catalysts for the degradation of organic dyes in wastewater.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data related to this article have been provided in this article.

References

  1. V. Rajendran, R. Mekala, Effect of pure and REM: (Nd, Ce)-doped Dy2O3 NPs via hydrothermal method and their magnetic, optical, electrochemical, antibacterial and photocatalytic activities. J. Alloys Compd. 741, 1055–1069 (2018)

    Article  Google Scholar 

  2. A. Karami, R. Monsef, M. Ridha Shihan, L. Yassen Qassem, M.W. Falah, M. Salavati-Niasari, UV-light-induced photocatalytic response of Pechini sol–gel synthesized erbium vanadate nanostructures toward degradation of colored pollutants. Environ Technol. Innov. 28, 102947 (2022)

    Article  Google Scholar 

  3. A. Panahi, R. Monsef, M. Kareem Imran, A. Abdul Mahdi, A. Abdul Kadhim Ruhaima, M. Salavati-Niasari, TmVO4/Fe2O3 nanocomposites: sonochemical synthesis, characterization, and investigation of photocatalytic activity. Int. J. Hydrogen Energy 48, 3916–3930 (2023)

    Article  Google Scholar 

  4. T. Gholami, M. Salavati-Niasari, S. Varshoy, Electrochemical hydrogen storage capacity and optical properties of NiAl2O4/NiO nanocomposite synthesized by green method. Int. J. Hydrogen Energy 42, 5235–5245 (2017)

    Article  Google Scholar 

  5. M. Chandrasekhar, H. Nagabhushana, K.H. Sudheerkumar, N. Dhananjaya, S.C. Sharma, D. Kavyashree, C. Shivakumara, B.M. Nagabhushana, Comparison of structural and luminescence properties of Dy2O3 nanopowders synthesized by co-precipitation and green combustion routes. Mater. Res. Bull. 55, 237–245 (2014)

    Article  Google Scholar 

  6. K. Omri, N. Alonizan, Effects of ZnO/Mn concentration on the micro-structure and optical properties of ZnO/Mn–TiO2 nano-composite for applications in photo-catalysis. J. Inorg. Organomet. Polym. Mater. 29, 203–212 (2019)

    Article  Google Scholar 

  7. M. Salavati-Niasari, F. Farzaneh, M. Ghandi, Oxidation of cyclohexene with tert-butylhydroperoxide and hydrogen peroxide catalyzed by alumina-supported manganese (II) complexes. J. Mol. Catal. A Chem. 186, 101–107 (2002)

    Article  Google Scholar 

  8. B. He, L. Zhao, W. Wang, F. Chen, C. Xia, Electro-catalytic activity of Dy2O3 as a solid oxide fuel cell anode material. Electrochem. Commun. 13, 194–196 (2011)

    Article  Google Scholar 

  9. J.-L. Her, T.-M. Pan, C.-H. Lu, Unipolar resistive switching behavior in Dy2O3 films for nonvolatile memory applications. Thin Solid Films 520, 5706–5709 (2012)

    Article  ADS  Google Scholar 

  10. I. Seferis, C. Michail, I. Valais, J. Zeler, P. Liaparinos, G. Fountos, N. Kalyvas, S. David, F. Stromatia, E. Zych, I. Kandarakis, G. Panayiotakis, Light emission efficiency and imaging performance of Lu2O3:Eu nanophosphor under X-ray radiography conditions: comparison with Gd2O2S:Eu. J. Lumin. 151, 229–234 (2014)

    Article  Google Scholar 

  11. S. Jiang, J. Liu, C. Lin, L. Bai, Y. Zhang, X. Li, Y. Li, L. Tang, H. Wang, Structural transformations in cubic Dy2O3 at high pressures. Solid State Commun. 169, 37–41 (2013)

    Article  ADS  Google Scholar 

  12. N. Alonizan, L. Chouiref, K. Omri, M.A. Gondal, N. Madkhali, T. Ghrib, A.I. Alhassan, Photocatalytic activity, microstructures and luminescent study of Ti-ZS: M nano-composites materials. J. Inorg. Organomet. Polym. Mater. 30, 4372–4381 (2020)

    Article  Google Scholar 

  13. X.C. Song, Y.F. Zheng, Y. Wang, Selected-control synthesis of dysprosium hydroxide and oxide nanorods by adjusting hydrothermal temperature. Mater. Res. Bull. 43, 1106–1111 (2008)

    Article  Google Scholar 

  14. M. Salavati-Niasari, J. Javidi, F. Davar, Sonochemical synthesis of Dy2(CO3)3 nanoparticles, Dy(OH)3 nanotubes and their conversion to Dy2O3 nanoparticles. Ultrason. Sonochem. 17, 870–877 (2010)

    Article  Google Scholar 

  15. A. Hooda, S.P. Khatkar, A. Khatkar, R.K. Malik, J. Dalal, S. Devi, V.B. Taxak, Crystal structure, synthesis and photoluminescent properties of a reddish-orange light emitting SrGdAlO4: Sm3+ nanophosphor. Mater. Chem. Phys. 232, 39–48 (2019)

    Article  Google Scholar 

  16. Y. Sohn, Structural and spectroscopic characteristics of terbium hydroxide/oxide nanorods and plates. Ceram. Int. 40, 13803–13811 (2014)

    Article  Google Scholar 

  17. S. Saha, S. Das, U.K. Ghorai, N. Mazumder, B.K. Gupta, K.K. Chattopadhyay, Charge compensation assisted enhanced photoluminescence derived from Li-codoped MgAl2O4:Eu3+ nanophosphors for solid state lighting applications. Dalton Trans. 42, 12965–12974 (2013)

    Article  Google Scholar 

  18. G.A.S. Josephine, A. Sivasamy, Nanocrystalline ZnO doped Dy2O3 a highly active visible photocatalyst: the role of characteristic f orbital’s of lanthanides for visible photoactivity. Appl. Catal. B Environ. 150–151, 288–297 (2014)

    Article  Google Scholar 

  19. S.J. Park, J.Y. Park, H.K. Yang, Luminescence of a novel cyan emitting Sr10(PO4)6O:Ce3+ phosphor for visualization of latent fingerprints and anti-counterfeiting applications. Sens. Actuators B Chem. 262, 542–554 (2018)

    Article  Google Scholar 

  20. A.-W. Xu, Y.-P. Fang, L.-P. You, H.-Q. Liu, A Simple method to synthesize Dy(OH)3 and Dy2O3 nanotubes. J. Am. Chem. Soc. 125, 1494–1495 (2003)

    Article  Google Scholar 

  21. M. Norek, E. Kampert, U. Zeitler, J.A. Peters, Tuning of the size of Dy2O3Nanoparticles for optimal performance as an MRI contrast agent. J. Am. Chem. Soc. 130, 5335–5340 (2008)

    Article  Google Scholar 

  22. K. Jayanthi, S. Chawla, K.N. Sood, M. Chhibara, S. Singh, Dopant induced morphology changes in ZnO nanocrystals. Appl. Surf. Sci. 255, 5875 (2009)

    Article  ADS  Google Scholar 

  23. K. Omri, N. Alonizan, Enhanced photocatalytic performance and impact of annealing temperature on TiO2/Gd2O3: Fe composite. J. Mater. Sci. Mater. Electron. 33, 15448–15459 (2022)

    Article  Google Scholar 

  24. O. Carp, L. Patron, A. Ianculescu, J. Pasuk, R. Olar, New synthesis routes for obtaining dysprosium manganese perovskites. J. Alloys. Compd. 351, 314 (2003)

    Article  Google Scholar 

  25. N. Qu, Z. Li, A novel wet-chemical route for synthesis of multiferroic AMnO3 (A = Gd, Tb, Dy) particles and its structural, optical and magnetic properties. J. Supercond. Novel Magn. 31, 2869–2877 (2018)

    Article  Google Scholar 

  26. J. Yang, X. Xie, P. Tang, H. Chen, C. Lv, Preparation of nanoparticulate DyMnO3 microwave-assisted method and its photocatalytic activity. Ferroelectrics 546, 231–238 (2019)

    Article  ADS  Google Scholar 

  27. K. Omri, I. Najeh, R. Dhahri, J. El Ghoul, L. El Mir, Effects of temperature on the optical and electrical properties of ZnO nanoparticles synthesized by sol–gel method. Microelectron. Eng. 128, 53–58 (2014)

    Article  Google Scholar 

  28. H.-B. Zhao, H.-L. Tu, F. Wei, X.-Q. Zhang, Y.-H. Xiong, J. Du, Resistive switching characteristics of Dy2O3 film with a Pt nanocrystal embedding layer formed by pulsed laser deposition. Rare Met. 33, 75–79 (2014)

    Article  Google Scholar 

  29. B.M. Abu-Zied, A.M. Asiri, Synthesis of Dy2O3 nanoparticles via hydroxide precipitation: effect of calcination temperature. J. Rare Earths 32, 259–264 (2014)

    Article  Google Scholar 

  30. K. Omri, S. Gouadria, Dielectric investigation and effect of low copper doping on optical and morphology properties of ZO-Cu nanoparticles. J. Mater. Sci. Mater. Electron. 32, 17021–17031 (2021)

    Article  Google Scholar 

  31. H. Chen, J. Yao, P. Qiu, C. Xu, F. Jiang, X. Wang, Facile surfactant assistant synthesis of porous oxygen-doped graphitic carbon nitride nanosheets with enhanced visible light photocatalytic activity. Mater. Res. Bull. 91, 42–48 (2017)

    Article  Google Scholar 

  32. J. Qin, C. Yang, M. Cao, X. Zhang, S. Rajendran, S. Limpanart, M. Ma, R. Liu, Twodimensional porous sheet-like carbon-doped ZnO/gC3N4 nanocomposite with high visiblelight photocatalytic performance. Mater. Lett. 189, 156–159 (2017)

    Article  Google Scholar 

  33. W. Du, X. Wang, H. Li, D. Ma, S. Hou, J. Zhang, X. Qian, H. Pang, ZrO2/Dy2O3 solid solution nano-materials: tunable composition, visible light-responsive photocatalytic activities and reaction mechanism. J. Am. Ceram. Soc. 96, 2979–2986 (2013)

    Article  Google Scholar 

  34. L. Gomathi Devi, R. Kavitha, A review on plasmonic metal–TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Appl. Surf. Sci. 360, 601–622 (2016)

    Article  ADS  Google Scholar 

  35. M. Pirhashemi, A. Habibi-Yangjeh, Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants. J. Colloid Interface Sci. 491, 216–229 (2017)

    Article  ADS  Google Scholar 

  36. J. Xia, J. Zhao, J. Chen, J. Di, M. Ji, L. Xu, Z. Chen, H. Li, Facile fabrication of g-C3N4/BiPO4 hybrid materials via a reactable ionic liquid for the photocatalytic degradation of antibiotic ciprofloxacin. J. Photochem. Photobiol. A Chem. 339, 59–66 (2017)

    Article  Google Scholar 

  37. H. Zhi-Qiao, T. Li-Li, Z. Zhi-Peng, C. Jian-Meng, S. Shuang, Ag/Ag2WO4 plasmonic catalyst for photocatalytic reduction of CO2 under visible light. Acta Phys. Chim. Sin. 31, 2341–2348 (2015)

    Article  Google Scholar 

  38. W. Hu, J. Yu, X. Jiang, X. Liu, R. Jin, Y. Lu, L. Zhao, Y. Wu, Y. He, Enhanced photocatalytic activity of g-C3N4 via modification of NiMoO4 nanorods. Coll. Surf. A Phys. Eng. Asp. 514, 98–106 (2017)

    Article  Google Scholar 

  39. S. Chanda, R. Maity, S. Saha, A. Dutta, T.P. Sinha, Double perovskite nanostructured Dy2CoMnO6 an efficient visible-light photocatalysts: synthesis and characterization. J. Sol–Gel Sci. Technol. 99, 600–613 (2021)

    Article  Google Scholar 

  40. Z.-F. Yao, Z.-X. Dai, Z.-J. Zhang, G.-H. Zheng, Xu. Xin, Visible-light-driven photocatalytic degradation using Mn-doped SrMoO4 nanoparticles. Appl. Organomet. Chem. 33, 4648 (2019)

    Article  Google Scholar 

  41. X. Ma, W. Zhou, Y. Chen, Structure and photocatalytic properties of Mn-doped TiO2 loaded on wood-based activated carbon fiber composites. Materials 10, 631 (2017)

    Article  Google Scholar 

  42. M. Baladi, M. Ghanbari, M. Valian, M. Salavati-Niasari, DyMnO3/Fe2O3 nanocomposites: simple sol-gel auto-combustion technique and photocatalytic performance for water treatment. Environ. Sci. Pollut. Res. Int. 28, 11066–11076 (2021)

    Article  Google Scholar 

  43. X. Meng, Z. Zhang, Pd-doped Bi2MoO6 plasmonic photocatalysts with enhanced visible light photocatalytic performance. Appl. Surf. Sci. 392, 169–180 (2017)

    Article  ADS  Google Scholar 

  44. N. Tahir, M. Zahid, I.A. Bhatti, Y. Jamil, Fabrication of visible light active Mn-doped Bi2WO6–GO/MoS2 heterostructure for enhanced photocatalytic degradation of methylene blue. Environ. Sci. Pollut. Res. 29, 6552–6567 (2022)

    Article  Google Scholar 

  45. Z. Barzgari, A. Ghazizadeh, S.Z. Askari, Preparation of Mn-doped ZnO nanostructured for photocatalytic degradation of Orange G under solar light. Res. Chem. Intermed. 42, 4303–4315 (2016)

    Article  Google Scholar 

  46. S.A. Mousavi, M. Hassanpour, M. Salavati-Niasari, H. Safardoust-Hojaghan, M. Hamadanian, Dy2O3/CuO nanocomposites: microwave assisted synthesis and investigated photocatalytic properties. J. Mater. Sci. Mater. Electron. 29, 1238–1245 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Alonizan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that may have influenced the work reported in this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonizan, N., Madani, M., Omri, K. et al. Hydrothermal synthesis and photocatalytic performance of Dy2O3/Mn nanostructures. Eur. Phys. J. Plus 138, 398 (2023). https://doi.org/10.1140/epjp/s13360-023-04026-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04026-w

Navigation