Skip to main content

Advertisement

Log in

Design of an ultra-high-speed coplanar QCA reversible ALU with a novel coplanar reversible full adder based on MTSG

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The amount of occupied area and energy waste are among the salient indexes that are important in designing and implementing digital circuits. Hence, the inherent properties of the quantum-dot cellular automata (QCA), like ultra-dense structure and ultra-low power consumption, have made this nanotechnology a viable substitute for complementary metal–oxide–semiconductor technology. The arithmetic logic unit (ALU) is each processor's operational and inseparable component. In this paper, a novel reversible ALU is proposed, which comprises a double Feynman gate, two Fredkin gates, and a new coplanar reversible full adder based on the modified TSG in QCA nanotechnology. This structure is implemented by 247 QCA cells in a 0.332 μm2 area, which uses the coplanar clock-zone-based crossover. This layout can perform 20 various arithmetic and logic operations, and its latency is nine clock phases. The proposed QCA layouts are evaluated and simulated by QCADesigner version 2.0.3. The simulation outcomes indicate that the proposed coplanar QCA ALU has a 14.28%, 40%, 48.54%, and 50.3% improvement in quantum cost, latency, cell count, and area occupancy, respectively, compared to the prior best coplanar architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. S.R. Heikalabad, M.N. Asfestani, M. Hosseinzadeh, A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. 74(5), 1994–2005 (2018)

    Article  Google Scholar 

  2. W. Yu, B. Zhang, C. Liu, Y. Zhao, W.R. Wu, Z.Y. Xue, M. Chen, D. Buca, J.M. Hartmann, X. Wang, Q.T. Zhao, Impact of Si cap, strain and temperature on the hole mobility of (s) Si/sSiGe/(s) SOI quantum-well p-MOSFETs. Microelectron. Eng. 113, 5–9 (2014)

    Article  Google Scholar 

  3. Y. Adelnia, A. Rezai, A novel adder circuit design in quantum-dot cellular automata technology. Int. J. Theor. Phys. 58(1), 184–200 (2019)

    Article  MATH  Google Scholar 

  4. S. Seyedi, N. Jafari Navimipour, Designing a multi-layer full-adder using a new three-input majority gate based on quantum computing. Concurr. Comput. Pract. Exp. 34(4), 6653 (2022)

    Article  Google Scholar 

  5. T. Zhang, V. Pudi, W. Liu, New majority gate-based parallel BCD adder designs for quantum-dot cellular automata. IEEE Trans. Circuits Syst. II Express Briefs 66(7), 1232–1236 (2018)

    Google Scholar 

  6. S. Seyedi, N.J. Navimipour, An efficient structure for designing a nano-scale fault-tolerant 2:1 multiplexer based on quantum-dot cellular automata. Optik 251, 168409 (2022)

    Article  ADS  Google Scholar 

  7. C.S. Lent, P.D. Tougaw, W. Porod, G.H. Bernstein, Quantum cellular automata. Nanotechnology 4(1), 49–57 (1993)

    Article  ADS  Google Scholar 

  8. P.D. Tougaw, C.S. Lent, Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75(3), 1818–1825 (1994)

    Article  ADS  Google Scholar 

  9. P.D. Tougaw, C.S. Lent, W. Porod, Bistable saturation in coupled quantum-dot cells. J. Appl. Phys. 74(5), 3558–3566 (1993)

    Article  ADS  Google Scholar 

  10. R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5(3), 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  11. C.H. Bennett, Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409(6816), 46–52 (2001)

    Article  ADS  Google Scholar 

  13. B. Parhami, Fault-tolerant reversible circuits. in 2006 Fortieth Asilomar Conference on Signals, Systems and Computers (IEEE, 2006).

  14. B. Bhuvana, V.K. Bhaaskaran, Quantum cost optimization of reversible adder/subtractor using a novel reversible gate, in Innovations in Electronics and Communication Engineering (Springer, 2018). p. 111–118.

  15. N.K. Misra, B. Sen, S. Wairya, B. Bhoi, Testable novel parity-preserving reversible gate and low-cost quantum decoder design in 1D molecular-QCA. J. Circuits Syst. Comput. 26(09), 1750145 (2017)

    Article  Google Scholar 

  16. N.K. Misra, S. Wairya, B. Sen, Design of conservative, reversible sequential logic for cost efficient emerging nano circuits with enhanced testability. Ain Shams Eng. J. 9(4), 2027–2037 (2018)

    Article  Google Scholar 

  17. N.K. Misra, S. Wairya, V.K. Singh, Approach to design a high performance fault-tolerant reversible ALU. Int. J. Circuits Architect. Des. 2(1), 83–103 (2016)

    Article  Google Scholar 

  18. M.M. Mano, Computer System Architecture, vol. 3 (Prentice Hall, Englewood Cliffs, 1993)

  19. A. Gupta, U. Malviya, V. Kapse, Design of speed, energy and power efficient reversible logic based vedic ALU for digital processors. in 2012 Nirma University International Conference on Engineering (NUiCONE) (IEEE, 2012)

  20. S.-S. Ahmadpour, M. Mosleh, S.R. Heikalabad, A revolution in nanostructure designs by proposing a novel QCA full-adder based on optimized 3-input XOR. Phys. B 550, 383–392 (2018)

    Article  ADS  Google Scholar 

  21. C.S. Lent, P.D. Tougaw, W. Porod, Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62(7), 714–716 (1993)

    Article  ADS  Google Scholar 

  22. M. Abdullah-Al-Shafi, A.N. Bahar, M.A. Habib, M.M.R. Bhuiyan, F. Ahmad, P.Z. Ahmad, K. Ahmed, Designing single layer counter in quantum-dot cellular automata with energy dissipation analysis. Ain Shams Eng. J. 9(4), 2641–2648 (2018)

    Article  Google Scholar 

  23. A. Roohi, R.F. DeMara, N. Khoshavi, Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)

    Article  Google Scholar 

  24. A. Kamaraj, P. Marichamy, Design of fault-tolerant reversible floating point division. Informacije MIDEM 48(3), 161–172 (2018)

    Google Scholar 

  25. S. Perri, P. Corsonello, G. Cocorullo, Area-delay efficient binary adders in QCA. IEEE Trans. Very Large Scale Integration Syst. 22(5), 1174–1179 (2013)

    Article  Google Scholar 

  26. A. Sadoghifar, S.R. Heikalabad, A Content-Addressable Memory structure using quantum cells in nanotechnology with energy dissipation analysis. Phys. B 537, 202–206 (2018)

    Article  ADS  Google Scholar 

  27. T.N. Sasamal, A.K. Singh, U. Ghanekar, Efficient design of coplanar ripple carry adder in QCA. IET Circuits Devices Syst. 12(5), 594–605 (2018)

    Article  Google Scholar 

  28. L. Lu, W. Liu, M. O’Neill, E.E. Swartzlander, QCA systolic array design. IEEE Trans. Comput. 62(3), 548–560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. G.H. Bernstein, A. Imre, V. Metlushko, A. Orlov, L. Zhou, L. Ji, G. Csaba, W. Porod, Magnetic QCA systems. Microelectron. J. 36(7), 619–624 (2005)

    Article  Google Scholar 

  30. M.S. Daliri, A. Abdoli, K. Navi, N. Bagherzadeh, A 3D universal structure based on molecular-QCA and CNT technologies. J. Mol. Struct. 1119, 86–95 (2016)

    Article  ADS  Google Scholar 

  31. G. Snider, A.O. Orlov, I. Amlani, G.H. Bernstein, C.S. Lent, J.L. Merz, W. Porod, Experimental demonstration of quantum-dot cellular automata. Semicond. Sci. Technol. 13(8A), A130 (1998)

    Article  ADS  Google Scholar 

  32. G. Toth, C.S. Lent, Quasiadiabatic switching for metal-island quantum-dot cellular automata. J. Appl. Phys. 85(5), 2977–2984 (1999)

    Article  ADS  Google Scholar 

  33. M.H. Valavi, G. Jaberipur, K.A.-R. Youssefi, Impact of different types of input wire on defect-tolerance of QCA majority voter. Eur. Phys. J. Plus 137(8), 977 (2022)

    Article  Google Scholar 

  34. M. Momenzadeh, M. Ottavi, F. Lombardi, Modeling QCA defects at molecular-level in combinational circuits, in 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT'05) (IEEE, 2005)

  35. J. Huang, M. Momenzadeh, M.B. Tahoori, F. Lombardi, Defect characterization for scaling of QCA devices [quantum dot cellular automata], in Proceedings of the 19th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2004 (DFT 2004) (IEEE, 2004)

  36. X. Yang, L. Cai, S. Wang, Z. Wang, C. Feng, Reliability and performance evaluation of QCA devices with rotation cell defect. IEEE Trans. Nanotechnol. 11(5), 1009–1018 (2012)

    Article  ADS  Google Scholar 

  37. M. Crocker, M. Niemier, X.S. Hu, M. Lieberman, Molecular QCA design with chemically reasonable constraints. ACM J. Emerg. Technol. Comput. Syst. 4(2), 1–21 (2008)

    Article  Google Scholar 

  38. A. Pulimeno, M. Graziano, A. Sanginario, V. Cauda, D. Demarchi, G. Piccinini, Bis-ferrocene molecular QCA wire: ab initio simulations of fabrication driven fault tolerance. IEEE Trans. Nanotechnol. 12(4), 498–507 (2013)

    Article  ADS  Google Scholar 

  39. S.S. Ahmadpour, M. Mosleh, S. Rasouli Heikalabad, Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int. J. Circuit Theory Appl. 47(7), 1037–1056 (2019)

    Article  Google Scholar 

  40. Y.Z. Barughi, S.R. Heikalabad, A three-layer full adder/subtractor structure in quantum-dot cellular automata. Int. J. Theor. Phys. 56(9), 2848–2858 (2017)

    Article  MATH  Google Scholar 

  41. J. Maharaj, S. Muthurathinam, Effective RCA design using quantum dot cellular automata. Microprocess. Microsyst. 73, 102964 (2020)

    Article  Google Scholar 

  42. N. Safoev, J.-C. Jeon, A novel controllable inverter and adder/subtractor in quantum-dot cellular automata using cell interaction based XOR gate. Microelectron. Eng. 222, 111197 (2020)

    Article  Google Scholar 

  43. H. Hosseinzadeh, S.R. Heikalabad, A novel fault tolerant majority gate in quantum-dot cellular automata to create a revolution in design of fault tolerant nanostructures, with physical verification. Microelectron. Eng. 192, 52–60 (2018)

    Article  Google Scholar 

  44. Y. Zhang, G. Xie, M. Sun, H. Lv, An efficient module for full adders in quantum-dot cellular automata. Int. J. Theor. Phys. 57(10), 3005–3025 (2018)

    Article  Google Scholar 

  45. S. Angizi, E. Alkaldy, N. Bagherzadeh, K. Navi, Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10(2), 259–271 (2014)

    Article  Google Scholar 

  46. K. Walus, T.J. Dysart, G.A. Jullien, R.A. Budiman, QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  ADS  Google Scholar 

  47. R. Wille, M. Soeken, D.M. Miller, R. Drechsler, Trading off circuit lines and gate costs in the synthesis of reversible logic. Integration 47(2), 284–294 (2014)

    Article  Google Scholar 

  48. D.M. Miller, R. Wille, R. Drechsler. Reducing reversible circuit cost by adding lines, in 2010 40th IEEE International Symposium on Multiple-Valued Logic (IEEE, 2010)

  49. T. Toffoli, Reversible computing, in International Colloquium on Automata, Languages, and Programming (Springer, Berlin, 1980)

  50. E. Fredkin, T. Toffoli, Conservative logic. Int. J. Theor. Phys. 21(3), 219–253 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  51. R.P. Feynman, Quantum mechanical computers. Found. Phys. 16(6), 507–531 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  52. A. Peres, Reversible logic and quantum computers. Phys. Rev. A 32(6), 3266 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  53. H. Thapliyal, M. Srinivas, A novel reversible TSG gate and its application for designing reversible carry look-ahead and other adder architectures, in Asia-Pacific Conference on Advances in Computer Systems Architecture (Springer, 2005)

  54. A.K. Biswas, M.M. Hasan, A.R. Chowdhury, H.M.H. Babu, Efficient approaches for designing reversible binary coded decimal adders. Microelectron. J. 39(12), 1693–1703 (2008)

    Article  Google Scholar 

  55. M. Mohammadi, M. Eshghi, On figures of merit in reversible and quantum logic designs. Quantum Inf. Process. 8(4), 297–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Haghparast, K. Navi, A novel reversible BCD adder for nanotechnology based systems. Am. J. Appl. Sci. 5(3), 282–288 (2008)

    Article  Google Scholar 

  57. A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, H. Weinfurter, Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)

    Article  ADS  Google Scholar 

  58. E. Taherkhani, M.H. Moaiyeri, S. Angizi, Design of an ultra-efficient reversible full adder-subtractor in quantum-dot cellular automata. Optik 142, 557–563 (2017)

    Article  ADS  Google Scholar 

  59. T.N. Sasamal, A.K. Singh, A. Mohan, Design of cost-efficient qca reversible circuits via clock-zone-based crossover. Int. J. Theor. Phys. 57(10), 3127–3140 (2018)

    Article  Google Scholar 

  60. S. Hashemi, M.R. Azghadi, K. Navi, Design and analysis of efficient QCA reversible adders. J. Supercomput. 75(4), 2106–2125 (2019)

    Article  Google Scholar 

  61. P. Kumar, S. Singh, Optimization of the area efficiency and robustness of a QCA-based reversible full adder. J. Comput. Electron. 18(4), 1478–1489 (2019)

    Article  Google Scholar 

  62. B. Sen, M. Dutta, M. Goswami, B.K. Sikdar, Modular design of testable reversible ALU by QCA multiplexer with increase in programmability. Microelectron. J. 45(11), 1522–1532 (2014)

    Article  Google Scholar 

  63. T.N. Sasamal, A.K. Singh, A. Mohan, Efficient design of reversible alu in quantum-dot cellular automata. Optik 127(15), 6172–6182 (2016)

    Article  ADS  Google Scholar 

  64. T.N. Sasamal, A. Mohan, A.K. Singh, Efficient design of reversible logic ALU using coplanar quantum-dot cellular automata. J. Circuits Syst. Comput. 27(02), 1850021 (2018)

    Article  Google Scholar 

  65. M. Norouzi, S.R. Heikalabad, F. Salimzadeh, A reversible ALU using HNG and Ferdkin gates in QCA nanotechnology. Int. J. Circuit Theory Appl. 48(8), 1291–1303 (2020)

    Article  Google Scholar 

  66. M. Mosleh, A novel full adder/subtractor in quantum-dot cellular automata. Int. J. Theor. Phys. 58(1), 221–246 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  67. S.S. Ahmadpour, M. Mosleh, S.R. Heikalabad (2022) Efficient designs of quantum-dot cellular automata multiplexer and RAM with physical proof along with power analysis. J. Supercomput. 78(2), 1672–1695. https://doi.org/10.1007/s11227-021-03913-2

  68. S.R. Heikalabad, F. Salimzadeh, Y.Z. Barughi (2020) A unique three-layer full adder in quantum-dot cellular automata. Comput. Electr. Eng. https://doi.org/10.1016/j.compeleceng.2020.106735

  69. F. Salimzadeh, S.R. Heikalabad (2021) A full adder structure with a unique XNOR gate based on Coulomb interaction in QCA nanotechnology. Opt. Quant. Electron. https://doi.org/10.1007/s11082-021-03127-z

  70. A. Norouzi, S.R. Heikalabad (2019) Design of reversible parity generator and checker for the implementation of nano-communication systems in quantum-dot cellular automata. Photon. Netw. Commun. 38(2), 231–243. https://doi.org/10.1007/s11107-019-00850-2

  71. S.R. Heikalabad, H. Kamrani (2019) Design and implementation of circuit-switched network based on nanoscale quantum-dot cellular automata. Photon. Netw. Commun. 38(3), 356–377. https://doi.org/10.1007/s11107-019-00864-w

  72. H. Kamrani, S.R. Heikalabad (2021) Design and implementation of multiplication algorithm in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. 77(6), 5779–5805. https://doi.org/10.1007/s11227-020-03478-6

  73. S.R. Heikalabad (2021) Non-coplanar counter in quantum-dot cellular automata. Eur. Phys. J. Plus. https://doi.org/10.1140/epjp/s13360-021-01198-1

  74. F. Salimzadeh, E. Safarpoor, S. Rasouli Heikalabad (2021) Designing and Implementing a Fault-Tolerant Priority Encoder in QCA Nanotechnology. ECS J. Solid State Sci. Technol. https://doi.org/10.1149/2162-8777/ac0118

  75. S.R. Heikalabad, R. Ahmadi, F. Salimzadeh (2021) Introducing a Full-Adder Structure for Finite Field in QCA. ECS J. Solid State Sci. Technol. https://doi.org/10.1149/2162-8777/ac08d9

  76. S.R. Heikalabad, M.R. Gadim (2018) Design of Improved Arithmetic Logic Unit in Quantum-Dot Cellular Automata. Int. J. Theor. Phys. 57(6), 1733–1747. https://doi.org/10.1007/s10773-018-3699-1

  77. F. Salimzadeh, S.R. Heikalabad (2019) Design of a novel reversible structure for full adder/subtractor in quantum-dot cellular automata. Physica. B Condensed Matter. https://doi.org/10.1016/j.physb.2018.12.028

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehdi Golsorkhtabaramiri or Saeed Rasouli Heikalabad.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aliabadian, R., Golsorkhtabaramiri, M., Heikalabad, S.R. et al. Design of an ultra-high-speed coplanar QCA reversible ALU with a novel coplanar reversible full adder based on MTSG. Eur. Phys. J. Plus 138, 481 (2023). https://doi.org/10.1140/epjp/s13360-023-04007-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04007-z

Navigation