Skip to main content
Log in

Isobaric heat capacity of classical and quantum fluids: extending experimental data sets into the critical scaling regime

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The singular isobaric heat capacity \(C_{{\text{P}}} (T,P)\) of nitrogen, methane, water and hydrogen at critical pressure \(P_{{\text{c}}}\) is studied over an extended temperature range, from the melting point to the high-temperature cutoff of the experimental data sets. The high- and low-temperature branches (above and below the critical temperature \(T_{{\text{c}}}\)) of \(C_{{\text{P}}} (T,P_{{\text{c}}} )\) can accurately be modeled with broken power-law distributions in which the calculated universal scaling exponent \(1 - 1/\delta\) of the isobaric heat capacity at critical pressure is implemented. (The enumerated fluids admit 3D Ising critical exponents). The parameters of these distributions are inferred by nonlinear least-squares regression from high-precision data sets. In each case, a non-perturbative analytic expression for \(C_{{\text{P}}} (T,P_{{\text{c}}} )\) is obtained. The broken power laws have closed-form Index functions representing the Log–Log slope of the regressed branches of \(C_{{\text{P}}} (T,P_{{\text{c}}} )\). These Index functions quantify the crossover from the experimentally more accessible high- and low-temperature regimes to the critical scaling regime. Ideal power-law scaling (without perturbative corrections and discounting impurities and gravitational rounding effects) of \(C_{{\text{P}}} (T,P_{{\text{c}}} )\) occurs in a narrow interval, typically within \(\left| {T/T_{{\text{c}}} - 1} \right| < 10^{ - 4}\) or even \(10^{ - 5}\) depending on the fluid, and the regressed broken power-law densities provide closed-form analytic extensions of \(C_{{\text{P}}} (T,P_{{\text{c}}} )\) to the melting point and up to dissociation temperatures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability Statement

The data sets analyzed during the current study are available on the NIST web pages https://www.nist.gov/srd/refprop and https://webbook.nist.gov/chemistry/fluid/, see Refs. [2, 3].

References

  1. A. Pelissetto, E. Vicari, Phys. Rep. 368, 549 (2002). https://doi.org/10.1016/S0370-1573(02)00219-3

    Article  ADS  MathSciNet  Google Scholar 

  2. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, 2018. https://www.nist.gov/srd/refprop

  3. E.W. Lemmon, M.O. McLinden, D.G. Friend, in P.J. Linstrom, W.G. Mallard (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database 69 (2021). https://webbook.nist.gov/chemistry/fluid/

  4. R. Span, E.W. Lemmon, R.T. Jacobsen, W. Wagner, A. Yokozeki, J. Phys. Chem. Ref. Data 29, 1361 (2000). https://doi.org/10.1063/1.1349047

    Article  ADS  Google Scholar 

  5. U. Setzmann, W. Wagner, J. Phys. Chem. Ref. Data 20, 1061 (1991). https://doi.org/10.1063/1.555898

    Article  ADS  Google Scholar 

  6. W. Wagner, A. Pruß, J. Phys. Chem. Ref. Data 31, 387 (2002). https://doi.org/10.1063/1.1461829

    Article  ADS  Google Scholar 

  7. J.W. Leachman, R.T. Jacobsen, S.G. Penoncello, E.W. Lemmon, J. Phys. Chem. Ref. Data 38, 721 (2009). https://doi.org/10.1063/1.3160306

    Article  ADS  Google Scholar 

  8. H. Güttinger, D.S. Cannell, Phys. Rev. A 24, 3188 (1981). https://doi.org/10.1103/PhysRevA.24.3188

    Article  ADS  Google Scholar 

  9. A. Haupt, J. Straub, Phys. Rev. E 59, 1795 (1999). https://doi.org/10.1103/PhysRevE.59.1795

    Article  ADS  Google Scholar 

  10. D.S. Cannell, Phys. Rev. A 12, 225 (1975). https://doi.org/10.1103/PhysRevA.12.225

    Article  ADS  Google Scholar 

  11. U. Närger, D.A. Balzarini, Phys. Rev. B 39, 9330 (1989). https://doi.org/10.1103/PhysRevB.39.9330

    Article  ADS  Google Scholar 

  12. L.M. Radzhabova, G.V. Stepanov, I.M. Abdulagatov, K.A. Shakhbanov, J. Supercrit. Fluids 63, 115 (2012). https://doi.org/10.1016/j.supflu.2011.11.017

    Article  Google Scholar 

  13. A. Kostrowicka Wyczalkowska, Kh.S. Abdulkadirova, M.A. Anisimov, J.V. Sengers, J. Chem. Phys. 113, 4985 (2000). https://doi.org/10.1063/1.1289244

    Article  ADS  Google Scholar 

  14. J.A. Lipa, J.A. Nissen, D.A. Stricker, D.R. Swanson, T.C.P. Chui, Phys. Rev. B 68, 174518 (2003). https://doi.org/10.1103/PhysRevB.68.174518

    Article  ADS  Google Scholar 

  15. J.R. de Bruyn, D.A. Balzarini, Phys. Rev. B 39, 9243 (1989). https://doi.org/10.1103/PhysRevB.39.9243

    Article  ADS  Google Scholar 

  16. J.A. Lipa, C. Edwards, M.J. Buckingham, Phys. Rev. A 15, 778 (1977). https://doi.org/10.1103/PhysRevA.15.778

    Article  ADS  Google Scholar 

  17. M.W. Pestak, M.H.W. Chan, Phys. Rev. B 30, 274 (1984). https://doi.org/10.1103/PhysRevB.30.274

    Article  ADS  Google Scholar 

  18. P. Losada-Pérez, C.A. Cerdeiriña, J. Thoen, J. Chem. Thermodyn. 128, 356 (2019). https://doi.org/10.1016/j.jct.2018.08.035

    Article  Google Scholar 

  19. P. Losada-Pérez, C.S.P. Tripathi, J. Leys, C. Glorieux, J. Thoen, J. Chem. Phys. 134, 044505 (2011). https://doi.org/10.1063/1.3535567

    Article  ADS  Google Scholar 

  20. M.R. Moldover, J.V. Sengers, R.W. Gammon, R.J. Hocken, Rev. Mod. Phys. 51, 79 (1979). https://doi.org/10.1103/RevModPhys.51.79

    Article  ADS  Google Scholar 

  21. M. Barmatz, I. Hahn, J.A. Lipa, R.V. Duncan, Rev. Mod. Phys. 79, 1 (2007). https://doi.org/10.1103/RevModPhys.79.1

    Article  ADS  Google Scholar 

  22. A. Oprisan, J.J. Hegseth, G.M. Smith, C. Lecoutre, Y. Garrabos, D.A. Beysens, Phys. Rev. E 84, 021202 (2011). https://doi.org/10.1103/PhysRevE.84.021202

    Article  ADS  Google Scholar 

  23. A. Oprisan, S.A. Oprisan, Y. Garrabos, C. Lecoutre-Chabot, D. Beysens, Eur. Phys. J. Plus 136, 523 (2021). https://doi.org/10.1140/epjp/s13360-021-01531-8

    Article  Google Scholar 

  24. R.B. Griffiths, J.C. Wheeler, Phys. Rev. A 2, 1047 (1970). https://doi.org/10.1103/PhysRevA.2.1047

    Article  ADS  Google Scholar 

  25. J. Stephenson, J. Chem. Phys. 54, 895 (1971). https://doi.org/10.1063/1.1675016

    Article  ADS  Google Scholar 

  26. A. Callegari, A. Magazzù, A. Gambassi, G. Volpe, Eur. Phys. J. Plus 136, 213 (2021). https://doi.org/10.1140/epjp/s13360-020-01020-4

    Article  Google Scholar 

  27. S. El-Showk, M.F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, A. Vichi, J. Stat. Phys. 157, 869 (2014). https://doi.org/10.1007/s10955-014-1042-7

    Article  ADS  MathSciNet  Google Scholar 

  28. R. Tomaschitz, Physica A 541, 123188 (2020). https://doi.org/10.1016/j.physa.2019.123188

    Article  MathSciNet  Google Scholar 

  29. R. Tomaschitz, Eur. Phys. J. Plus 136, 629 (2021). https://doi.org/10.1140/epjp/s13360-021-01542-5

    Article  Google Scholar 

  30. X. Gabaix, Q. J. Econ. 114, 739 (1999). https://doi.org/10.1162/003355399556133

    Article  Google Scholar 

  31. X. Gabaix, Annu. Rev. Econ. 1, 255 (2009). https://doi.org/10.1146/annurev.economics.050708.142940

    Article  Google Scholar 

  32. A. Clauset, C.R. Shalizi, M.E.J. Newman, SIAM Rev. 51, 661 (2009). https://doi.org/10.1137/070710111

    Article  ADS  MathSciNet  Google Scholar 

  33. E. Puppin, Eur. Phys. J. Plus 135, 420 (2020). https://doi.org/10.1140/epjp/s13360-020-00398-5

    Article  Google Scholar 

  34. M.E.J. Newman, Contemp. Phys. 46, 323 (2005). https://doi.org/10.1080/00107510500052444

    Article  ADS  Google Scholar 

  35. J.B. McDonald, Econometrica 52, 647 (1984). https://doi.org/10.2307/1913469

    Article  Google Scholar 

  36. J.B. McDonald, Y.J. Xu, J. Econ. 66, 133 (1995). https://doi.org/10.1016/0304-4076(94)01612-4

    Article  Google Scholar 

  37. R. Tomaschitz, Physica A 611, 128421 (2023). https://doi.org/10.1016/j.physa.2022.128421

    Article  Google Scholar 

  38. J.S. Kouvel, M.E. Fisher, Phys. Rev. 136, A1626 (1964). https://doi.org/10.1103/PhysRev.136.A1626

    Article  ADS  Google Scholar 

  39. J.V. Sengers, J.G. Shanks, J. Stat. Phys. 137, 857 (2009). https://doi.org/10.1007/s10955-009-9840-z

    Article  ADS  MathSciNet  Google Scholar 

  40. R. Tomaschitz, J. Supercrit. Fluids 181, 105491 (2022). https://doi.org/10.1016/j.supflu.2021.105491

    Article  Google Scholar 

  41. R. Tomaschitz, Int. J. Thermophys. 43, 130 (2022). https://doi.org/10.1007/s10765-022-03034-9

    Article  ADS  Google Scholar 

  42. N. Fameli, D.A. Balzarini, Phys. Rev. B 75, 064203 (2007). https://doi.org/10.1103/PhysRevB.75.064203

    Article  ADS  Google Scholar 

  43. P. Venkatesu, J. Chem. Phys. 123, 024902 (2005). https://doi.org/10.1063/1.1953576

    Article  ADS  Google Scholar 

  44. Wolfram Research, Inc., Mathematica,® Version 13.1, Champaign, IL, (2022). https://www.wolfram.com/mathematica/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Tomaschitz.

Appendices

Appendix 1

Nonlinear regression of multiply broken power laws subject to parameter constraints

The least-squares regression sketched in this appendix will be exemplified with the broken power law (2.1), which is parametrized with positive amplitudes \(a_{0}\), \(b_{k}\), positive exponents \(\beta_{k}\), \(\eta_{k}\) and real exponent \(\alpha_{0}\). The amplitudes in (2.1) can be written as \(b_{k} = 10^{{b_{10,k} }}\), with real exponent \(b_{10,k}\) as fitting parameter, which is adapted to the decadic Log–Log representations of the heat capacity \(C_{{\text{P}}} (\tau )\) in the figures.

When minimizing the least-squares functional (defined below), we use rescaled parameters \(\hat{b}_{k}^{{}}\),\(\hat{\beta }_{k}^{{}}\),\(\hat{\eta }_{k}^{{}}\) related to \(b_{k}^{{}}\),\(\beta_{k}^{{}}\),\(\eta_{k}^{{}}\) in (2.1) by

$$\hat{b}_{k}^{{}} = (10^{{b_{10,k} }} )^{{ - \beta_{k} /\eta_{k} }} ,\;\hat{\beta }_{k}^{{}} = \beta_{k} /\eta_{k} ,\;\hat{\eta }_{k}^{{}} = \eta_{k}^{{}} ,$$
(7.1)

and inversely,

$$b_{10,k} = {\text{Log}}(\hat{b}_{k}^{{ - 1/\hat{\beta }_{k} }} ),\;\beta_{k} = \hat{\beta }_{k}^{{}} \hat{\eta }_{k} ,\;\eta_{k}^{{}} = \hat{\eta }_{k}^{{}} .$$
(7.2)

(Log denotes the decadic logarithm, and \(b_{k} = 10^{{b_{10,k} }}\).) The reparametrized \(C_{{\text{P}}} (\tau )\) in (2.1) can be written as

$$C_{{\text{P}}} (\tau ) = a_{0} \tau^{{\alpha_{0} }} \frac{1}{{(1 + \hat{b}_{1}^{{}} \tau^{{\hat{\beta }_{1} }} )^{{ \, \hat{\eta }_{1} }} }}(1 + \hat{b}_{2}^{{}} \tau^{{\hat{\beta }_{2} }} )^{{ \, \hat{\eta }_{2} }} (1 + \hat{b}_{3}^{{}} \tau^{{\hat{\beta }_{3} }} )^{{ \, \hat{\eta }_{3} }} .$$
(7.3)

The exponents \(\hat{\beta }_{k}^{{}}\),\(\hat{\eta }_{k}^{{}}\) and amplitudes \(\hat{b}_{k}^{{}}\) are positive like \(\beta_{k}^{{}}\),\(\eta_{k}^{{}}\),\(b_{k}^{{}}\).

The asymptotic power-law scaling of \(C_{{\text{P}}} (\tau )\) in (7.3) reads \(C_{{\text{P}}} (\tau \to \infty )\sim A_{ + } \tau^{1 - 1/\delta }\), with exponent and amplitude related to the rescaled fitting parameters by

$$1 - 1/\delta = \alpha_{0} - \hat{\beta }_{1} \hat{\eta }_{1}^{{}} + \hat{\beta }_{2} \hat{\eta }_{2}^{{}} + \hat{\beta }_{3} \hat{\eta }_{3}^{{}} ,\;A_{ + } = a_{0} \hat{b}_{2}^{{\hat{\eta }_{2} }} \hat{b}_{3}^{{\hat{\eta }_{3} }} /\hat{b}_{1}^{{\hat{\eta }_{1} }} ,$$
(7.4)

which is the counterpart to Eqs. (2.2) in the new parametrization. By identifying \(1 - 1/\delta\) with the calculated scaling exponent \(0.7912\), the first identity in (7.4) becomes a constraint on the parameters, which can be used to eliminate the exponent \(\alpha_{0}\) from \(C_{{\text{P}}} (\tau )\) in (7.3), arriving at

$$C_{{\text{P}}} (\tau ) = A_{ + } \tau^{1 - 1/\delta } \frac{1}{{(1 + \hat{b}_{1}^{ - 1} \tau^{{ - \hat{\beta }_{1} }} )^{{ \, \hat{\eta }_{1} }} }}(1 + \hat{b}_{2}^{ - 1} \tau^{{ - \hat{\beta }_{2} }} )^{{ \, \hat{\eta }_{2} }} (1 + \hat{b}_{3}^{ - 1} \tau^{{ - \hat{\beta }_{3} }} )^{{ \, \hat{\eta }_{3} }} ,$$
(7.5)

with positive fitting parameters \(A_{ + }\),\(\hat{b}_{k}^{{}}\),\(\hat{\beta }_{k}^{{}}\),\(\hat{\eta }_{k}^{{}}\), \(k = 1,2,3\). The exponent \(1 - 1/\delta = 0.7912\) is predetermined input, and the amplitude \(a_{0}\) in (7.3) is calculated from the regressed parameters via the second equation in (7.4).

The least-squares functional used for the regression reads

$$\chi ^{2} (A_{ + } ,(\hat{b}_{k} ,\hat{\beta }_{k} ,\hat{\eta }_{k} )_{{k = 1,2,3}} ) = \sum\limits_{{i = 1}}^{N} {\frac{{(C_{{\text{P}}} (\tau _{i} ) - C_{{{\text{P}},i}} )^{2} }}{{C_{{{\text{P}},i}}^{2} }}} ,$$
(7.6)

where \((\tau_{i} ,C_{{{\text{P}},i}} )_{i = 1,...,N}\) are the data points enumerated in Sect. 2.1 and \(C_{{\text{P}}} (\tau )\) is the broken power law (7.5) depending on the fitting parameters \(A_{ + }\),\((\hat{b}_{k}^{{}} ,\hat{\beta }_{k}^{{}} ,\hat{\eta }_{k}^{{}} )_{k = 1,2,3}\). Once these parameters are determined by minimization of the \(\chi^{2}\) functional (7.6), we find the parameters \(a_{0}\),\(\alpha_{0}\) and \((b_{k}^{{}} ,\beta_{k}^{{}} ,\eta_{k}^{{}} )_{k = 1,2,3}\) of \(C_{{\text{P}}} (\tau )\) in (2.1) by way of (7.2) and (7.4), cf. Table 2.

An efficient Mathematica® [44] routine to minimize a nonlinear \(\chi^{2}\) functional such as (7.6) is FindMinimum[{chisquared[…],constraints},{initial values},MaxIterations → nmax]. The constraints are positivity constraints \(\hat{b}_{k} > 0\quad \&\,\& \quad\hat{\beta }_{k}>0\quad \&\,\& \quad \hat{\eta }_{k}>0\), where the double ampersand denotes the logical AND. Alternatively, positivity constraints for the iteration can be avoided by replacing the parameters \((\hat{b}_{k}^{{}} ,\hat{\beta }_{k}^{{}} ,\hat{\eta }_{k}^{{}} )\) by \((\sqrt {\hat{b}_{k}^{2} } ,\sqrt {\hat{\beta }_{k}^{2} } ,\sqrt {\hat{\eta }_{k}^{2} } )\) in (7.5).

To find reasonably accurate initial values for the fitting parameters, which is essential in nonlinear multiparameter regression, one uses \(C_{{\text{P}}} (\tau )\) in parametrization (2.1) rather than (7.5). The factors in (2.1) can be ordered by increasing amplitude, \(b_{1} < b_{2} < ... < b_{n}\) (with \(n = 3\) in (2.1)). In the range \(\tau < < b_{k}\), the factors defined by the amplitudes \(b_{k} , \, b_{k + 1} ,...,b_{n}\) are close to one and can be dropped. Therefore, an initial guess can be obtained by visually fitting the factors one by one, starting with the simple power law \(a_{0} \tau^{{\alpha_{0} }}\) in (2.1) and increasing the \(\tau\) range in each step by adding the respective data points and the respective factor. The amplitudes \(b_{k}\) are the break points between the power-law segments (which are straight line segments in Log–Log plots) and the exponents \(\eta_{k}\) determine the extent (curvature) of the transitional regions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomaschitz, R. Isobaric heat capacity of classical and quantum fluids: extending experimental data sets into the critical scaling regime. Eur. Phys. J. Plus 138, 457 (2023). https://doi.org/10.1140/epjp/s13360-023-04006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04006-0

Navigation