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Abstract We apply to tensor-multi-scalar gravity the effective fluid analysis based on the representation of the gravitational scalar
field as a dissipative effective fluid. This generalization poses new challenges as the effective fluid is now a complicated mixture of
individual fluids mutually coupled to each other, and many reference frames are possible for its description. They are all legitimate,
although not all convenient for specific problems, and they give rise to different physical interpretations. Two of these frames are
highlighted, and implications for cosmology are pointed out.

1 Introduction

There are many motivations to modify Einstein’s theory of gravity, general relativity (GR). Quantizing GR, or even introducing the
lowest-order quantum corrections introduces deviations from it, which assume the form of extra degrees of freedom, higher-order
derivatives in the field equations, non-local terms, or higher powers of the curvature in the action. The low-energy limit of bosonic
string theory, which is the simplest string theory, consists of a Brans–Dicke gravity [1] with coupling parameter ω = −1 [2, 3].
Starobinski inflation, which was historically the first model of inflation in the early universe [4] and is the model favoured by
cosmological observations [5, 6], has quadratic quantum corrections to the curvature as its essential ingredient and can be seen as
an f (R) theory (where R is the Ricci scalar), which is equivalent to a class of scalar–tensor theories [7–9].

The most compelling motivation to study modified gravity comes, no doubt, from the need to explain the present acceleration
of the universe. The 1998 discovery that our universe expands in an accelerated way made with the study of the distance-redshift
relation of type Ia supernovae, begs for an explanation. The standard cosmological model based on general relativity, known as the
� cold dark matter (�CDM) model, postulates a problematic (astonishingly small) cosmological constant � or else a mysterious
dark energy with very negative pressure. The latter was introduced in the theory in an ad hoc fashion [10] and is, no doubt, deeply
unsatisfactory. An alternative to dark energy consists of modifying gravity on Hubble scales, which is consistent with current
knowledge because GR is, thus far, tested only in certain regimes [11, 12]. Modifications of GR abound in the literature [13], with
the class of scalar–tensor [1, 14–16] and f (R) [17, 18] theories being apparently the most popular.

It is well known that the scalar–tensor gravity field equations can be written as effective Einstein equations with an effective
dissipative fluid in their right-hand side, built out of the Brans–Dicke-like scalar field φ present in the theory and of its first and
second covariant derivatives [19–25]. The formalism has been generalized to “viable” Horndeski gravity [26–28] and applied to
Friedmann–Lemaître–Robertson–Walker (FLRW) cosmology [29], to theories containing non-propagating scalar degrees of freedom
[30, 31], and to specific scalar-tensor solutions [32, 33]. But what is the analogue of a multi-component fluid? Naturally, the simplest
multi-fluid equivalent of a theory of gravity is tensor-multi-scalar gravity. Here we extend the effective fluid formalism to this class
of theories. The task is much less obvious than it would appear at first sight because all the gravitational scalar fields couple to
gravity, which makes them all couple to each other. In general, there can also be direct mutual couplings through their kinetic
and potential terms in the action. In the presence of multiple real fluids decoupled from each other, one can describe this mixture
in the frame of an observer with timelike four-velocity uμ. This four-velocity can be that of the comoving frame of one of the
fluids, or it can be associated with any other observer. In general, it is difficult to define an average fluid [34]. This means that the
total stress-energy tensor Tμν of the effective fluid mixture, which is a tensor defined unambiguously, can be decomposed in many
ways according to the four-velocity uμ selected. Each of these descriptions is legitimate, but the description of the total mixture
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and its physical interpretation will depend on the observer uμ selected to decompose Tμν . In particular, the density, pressure, heat
flux density, and anisotropic stresses of each fluid as “seen” from a particular observer uμ will differ from those measured in the
comoving frame of that fluid. To appreciate the difference between the descriptions of a fluid in different frames, consider a perfect
fluid with four-velocity u∗

μ that, in its comoving frame, is described by the stress-energy tensor1

Tμν = ρ∗ u∗
μ u∗

ν + P∗h∗
μν . (1)

In the frame of a different observer with timelike four-velocity uμ related to uμ∗ by

u∗
μ =γ

(
uμ + vμ

)
, (2)

γ = 1√
1 − v2

= −u∗
μu

μ, (3)

v2 ≡vαvα > 0, vαuα = 0, 0 ≤ v2 < 1, (4)

this perfect fluid (now “tilted”) will appear dissipative, with the different stress-energy tensor decomposition [36–38]

Tμν = ρ uμ uν + Phμν + qμuν + qνuμ + πμν , (5)

where

hμν ≡ gμν + uμuν, (6)

ρ = ρ∗ + γ 2 v2(ρ∗ + P∗) = γ 2(ρ∗ + v2P∗) (7)

is the energy density,

P = P∗ + γ 2 v2

3

(
ρ∗ + P∗) (8)

is the pressure,

qμ = (
1 + γ 2 v2)(ρ∗ + P∗)vμ = γ 2(ρ∗ + P∗)vμ (9)

is the energy flux density, and

πμν = γ 2(ρ∗ + P∗)
(

vμ vν − v2

3
hμν

)
(10)

is the anisotropic stress tensor. It is clear that the (spatial) vector qμ arises solely due to the relative motion between the two frames,
i.e., to the (spatial) vector vμ. In this context it is problematic to interpret this purely convective current as a heat flux according to
Eckart’s generalization of Fourier’s law [39]

qμ = −K
(
hμν∇νT + T u̇μ

)
, (11)

where T is the temperature and K is the thermal conductivity. This law expresses the fact that heat conduction is caused not only by
spatial temperature gradients but also by an “inertial” contribution due to the fluid acceleration [39–42].

The situation becomes more complicated when multiple fluids are coupled to each other and even more when they are effective
fluids, and they all couple explicitly with the curvature2 (more precisely, with the Ricci scalar R) and to each other, which is the
situation in tensor-multi-scalar gravity. In this work, we discuss two possibilities, but other frames may be more convenient for
specific problems.

Rather surprisingly, in tensor-multi-scalar gravity formulated in the Jordan conformal frame, one can obtain a particular frame
as a sort of fictitious “average” frame, which is generally not possible with real fluids [34]. It is obtained by identifying the coupling
function of the scalars to R (which depends on all the scalar fields in the theory) with a new field ψ and amounts to a redefinition
of the scalar fields. This procedure is routine in tensor-single-scalar gravity, in which the only Brans–Dicke-like field is redefined
for convenience, without much consequence or interpretation. In tensor-multi-scalar gravity, instead, this redefinition takes a new
meaning. It identifies a four-velocity and a sort of “average” frame because there is only one Ricci scalar R and all the scalar fields in
the theory couple to it. This ingredient is missing for real fluids, which do not couple to the curvature and have no “average” frame
[34].

In the following, we analyse tensor-multi-scalar gravity in its Jordan (conformal) frame formulation. It is possible to discuss it
from the point of view of the “average” observer, or from the comoving frame of each fluid, or from that of any other timelike
observer uμ. It is important to remember that these descriptions will be different and will provide different physical interpretations

1 We follow the notation and conventions of Ref. [35]: the metric signature is −+++, κ ≡ 8πG, G is Newton’s constant, and units are used in which the
speed of light c is unity.
2 We do not consider derivative couplings in this work.
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of the mechanical and thermal aspects of the fluid mixture and that these are all legitimate (hence one should not strive to identify
the “correct” one). The point is that some of these formulations (originating different decompositions of the total Tμν based on
different uα) will be more convenient, and some others will be less convenient, for specific physical problems. One should adopt the
formulation that is most convenient for the particular problem at hand without prejudice. For example, analyses of the quark-gluon
plasma created in heavy ion collisions universally employ the Landau (or energy) frame [43–47] in which there is no heat flux3 while
in FLRW cosmology, where comoving coordinates are the standard, relativistic fluids are routinely described in their comoving (or
Eckart) frame [34, 35].

Here we are interested in the fluid-mechanical equivalent and in the thermal description of tensor-multi-scalar gravity, where the
fluids in the mixture are effective fluids, and they all couple explicitly with R and with each other. This is a very specific situation,
and our choices, although convenient in this problem, are not meant to be recipes with universal convenience (although aspects
of our discussion may apply to other situations as well). After this discussion, we present an alternative view of the first-order
thermodynamics of tensor-multi-scalar gravity in the Einstein conformal frame, while the last section summarizes our conclusions.

2 Tensor-multi-scalar gravity in the Jordan conformal frame

Let us begin with a convenient Jordan frame formulation of tensor-multi-scalar gravity (without derivative couplings). We adopt
most of the notations specific to tensor-multi-scalar gravity used in Ref. [49]. There are N scalar fields of gravitational nature

{
φA

}
,

with A = 1, 2, . . . , N , all coupled non-minimally with the Ricci scalar R and between themselves, as described by the action

STMS = 1

2κ

∫
d4x

√−g
[
F(φ J )R − ZAB(φ J )gμν∇μφA∇νφ

B −V (φ J )
]

+ S(m), (12)

where capital indices A, B, J, . . . label the scalar fields in the multiplet
{
φ1, . . . , φN

}
, g is the determinant of the spacetime metric

gμν , ∇μ is the associated covariant derivative, and V is a scalar field potential. We include the matter action S(m) because, in many
realistic situations, matter is present. For example, in FLRW cosmology, even if the dynamics of the present universe is dominated
by the mysterious dark energy which could be described by modifying Einstein gravity, the present universe still contains baryons,
radiation, neutrinos, and dark matter, some of which have been dominant in the past (for example, in the radiation era). The Einstein
summation convention is used also on the multiplet indices J . The coupling function F

(
φ1 , . . . , φN

)
depends on all the φA, i.e.,

∂F/∂φ I �= 0 ∀I ∈ {1, . . . , N }, or else some of the scalar fields would not be coupled directly to R and would lose their status of
gravitational scalar fields.4 F is assumed to be positive to keep the effective gravitational coupling Geff 
 1/F positive.

The matrix ZAB
(
φ1, . . . , φN

)
acts as a Riemannian metric on the scalar field space of coordinates

{
φ1, . . . , φN

}
. ZAB can be

taken to be symmetric without loss of generality because it multiplies the combination of kinetic terms ∇αφA∇αφB symmetric
in A and B. The elements of ZAB are all positive to avoid introducing unstable phantom fields. In general, also the potential V(
φ1, . . . , φN

)
depends on multiple fields (although it is not important that it depends on all these fields, which is instead crucial for

the coupling function F).
Since the matrix ZAB is real and symmetric, it can be diagonalized at each spacetime point xμ and has positive eigenvalues,

turning the sum of kinetic terms appearing in the action (12) into

ZAB

(
φ J

)
gμν∇μφA∇νφ

B =Z̄ AB

(
φ̄ J

)
gμν∇μφ̄A∇ν φ̄

A

=
N∑

A=1

Z̄ A

(
φ̄ J

)
gμν ∇μφ̄A∇ν φ̄

A, (13)

where a bar denotes fields in the system of principal axes of the matrix ZAB in field space, and

Z̄ AB = diag
(
Z̄1, . . . , Z̄N

)
(14)

is the diagonal form of ZAB . This diagonalization, however, is not crucial, and we will not use it explicitly, retaining the non-diagonal
form of ZAB in our formulae.

3 Multi-fluid decomposition

The total stress-energy tensor is obtained by varying the action (12) with respect to gμν . Using ∂A ≡ ∂/∂φA and DAB ≡ ZAB+∂AB F ,
the associated equation of motion reads

Gμν = κ Tμν + κ T (m)
μν

F
, (15)

3 This frame is found to be non-unique in Ref. [48].
4 The nature of these scalar fields (gravitational or not) depends on the conformal frame [50]. Here we refer to the Jordan conformal frame.
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where Gμν ≡ Rμν − 1
2 gμνR is the Einstein tensor, T (m)

μν ≡ − 2√−g
δS(m)

δgμν is the matter stress-energy tensor and

κ Tμν = 1

F
∂AF

[
∇μ∇νφ

A − gμν�φA
]

+ DAB

F
∇μφA∇νφ

B

− 1

2F
(ZAB + 2∂AB F)gμν∇ρφA∇ρφB − V

2F
gμν . (16)

The equation of motion obtained by variation of the action with respect to φA reads

2ZAB�φA = + ∂B F R − ∂BV − ∂B ZAC∇αφA∇αφC

+ 2∂AZCB∇αφC∇αφA . (17)

We can obtain the expression of the Ricci scalar from (15),

R = 2V

F
+ 3∂AF

F
�φA − κ T (m)

F
+

(
3∂AB F + ZAB

)

F
∇αφB∇αφA ,

where T (m) ≡ gμνT (m)
μν is the trace of the matter stress-energy tensor. With this expression, Eq. (17) turns into

0 = (3∂AF∂B F + 2FZAB)

F
�φA + 2∂B F V

F
− ∂BV − ∂B F

F
κ T (m)

+ ∂B F

F
(3∂AC F + ZAC )∇αφA∇αφC

+ (2∂AZBC − ∂B ZAC )∇αφA∇αφC .

Assuming det(3∂AF∂B F + 2FZAB) �= 0, we use the matrix MAB ≡ (3∂AF∂B F + 2FZAB)−1 to isolate �φA, obtaining

�φA = MAB
[
F∂BV − 2V ∂B F + κT (m)∂B F − ∂B F(3∂AC F + ZAC )∇αφA∇αφC − F(2∂AZBC − ∂B ZAC )∇αφA∇αφC

]
.

(18)

The goal of the decomposition given here is to separate Tμν so that each part can be decomposed in the frame of a given fluid. Each
fluid then receives an individual stress-energy tensor contribution. The number of purely convective terms is minimized by such a
decomposition to allow for a clearer description of the intrinsic dissipative properties of each fluid.

Assuming the gradient of each scalar field to be timelike,

X A ≡ −1

2
∇μφA∇μφA > 0 , (19)

we define the φA-fluid four-velocity

uA
μ ≡ ∇μφA

√
2X A

. (20)

At this point, in order to avoid ambiguities, all the multiplet summations in this section will be written with an explicit summation
symbol. The above identification between a scalar field and an associated effective fluid allows us to rewrite the scalar field derivatives
in terms of kinematic quantities [27]. The second derivative ∇μ∇νφ

A in Eq. (16) can be expanded as

∇μ∇νφ
A =

√
2X A

(
σ A

μν + 1

3
�AhA

μν − 2u̇ A
(μu

A
ν)

)

−
(
�φA −

√
2X A �A

)
uA

μu
A

ν , (21)

where hA
μν ≡ gμν + uA

μuA
ν is the three-metric of the hypersurface orthogonal to the four-vector uA

μ, �A ≡ ∇μuAμ is the
expansion tensor associated with the A-fluid, and σ A

μν ≡ 1
2

(
hA

ac∇cuA
b + hA

bc∇cuA
a
) − 1

3 �A hA
ab.

With this result, Eq. (16) becomes

κ Tμν =
∑

A,B

{
1

F

(
2
√
X AX BDAB +

√
2X A∂AF �AδAB

)
uA

μu
B

ν

+ ∂B F

F
δAB

(

−�φA +
√

2X A

3
�A

)

hA
μν

− 1

2F

[
2
√
X AX B(ZAB + 2∂AB F) uA

ρu
Bρ

]
gμν

+
√

2X A∂B F

F
δAB

(
σ A

μν − 2u̇ A
(μu

A
ν)

)}
− V

2F
gμν , (22)
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where

�φA =
∑

A,B

{
MAB

[
F ∂BV − 2V ∂B F + κ T (m) ∂B F

− 2
∑

C

(√
X AXC∂B F(3∂AC F + ZAC )uA

αu
Cα

+
√
X AXC F(2∂AZBC − ∂B ZAC )uA

αu
Cα

)]}
. (23)

Since this equation does not depend on four-velocity gradients, we can interpret it as a purely inviscid contribution to the stress-energy
tensor mixture.

If we rewrite the metric as

gμν = hA
μν − uA

μu
A

ν = 1

N

∑

J

(
hJ

μν − uJ
μu

J
ν

)

= 1

N

∑

A,B

δAB

(
hB

μν − uA
μu

B
ν

)
(24)

and we define

T ≡ − 1

N

∑

A,B

{√
X AX B(ZAB + 2∂AB F) uA

ρu
Bρ

}
− V

2N
(25)

then, writing explicitly the summations, the stress-energy tensor assumes the form

κ Tμν =
∑

A,B

{
1

F

(
2
√
X AX B DAB +

√
2X A ∂AF �AδAB − T δAB

)
uA

μu
B

ν

+ ∂B F

F
δAB

(

T − �φB +
√

2XB

3
�B

)

hA
μν +

√
2XB∂B F

F
δAB

(
σ B

μν − 2u̇ A
(μu

B
ν)

)}

=
∑

A

{
1

F

(
∂AF �A − T + U A

)
uA

μu
A

ν + ∂AF

F

(

T − �φA +
√

2X A

3
�A

)

hA
μν

+
√

2X A∂AF

F
σ A

μν + 1

F

(
V A

(μ − 2
√

2X A∂AFu̇
A

(μ

)
uA

ν)

}
. (26)

The last equality of Eq. (26) is obtained by decomposing uB
ν = hAρ

ν uB
ρ − uA

ν (uAρuB
ρ), where there is no summation on the

repeated indices, and by defining
∑

AB

2
√
X AX B DABu

A
μu

B
ν

=
∑

A

U AuA
μu

A
ν + V A

(μu
A

ν)

where
∑

B

2
√
X AX BuAρuB

ρDAB = −U A , (27)

and
∑

B

2
√
X AX BDABh

Aρ
νu

B
ρ = V A

ν . (28)

In the form given by Eq. (26), the stress-energy tensor is the sum of dissipative stress-energy tensors decomposed along the four
velocity of each fluid. It can be interpreted as a mixture of interacting (effective) imperfect fluids.

4 “Average” or “ψ-” description

Let us discuss another possible procedure. In the following, we redefine the fields φA but, before proceeding, it is essential to note
(and remember through the rest of this work) that all these fields couple directly with the Ricci scalar R through F, and they all play
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a role in determining the properties of the effective fluid equivalent to the tensor-multi-scalar theory and the effective gravitational
coupling Geff ≡ F−1. (Their role may be different as, in general, F

(
φ1, . . . , φN

)
is not symmetric in all its arguments.) In particular,

the effective temperature of this multi-component fluid is determined by all the fields φA and the upcoming redefinition of these
fields does not change this fact.

We proceed to redefine the scalar field multiplet as in Ref. [49], which is standard practice in single-scalar-tensor gravity. We can
rename the coupling function by electing it to be a Brans-Dicke-like scalar,

ψ ≡ F
(
φ1 , . . . , φN

)
, (29)

and we then have the N scalar fields
{
ψ, φ1, . . . , φN−1

}
. This mathematically convenient procedure effectively makes only the

field ψ couple explicitly to R, but the reader should not be fooled into believing that the remaining fields φA do not couple to gravity.
In fact, all the fields φA are coupled to ψ (and also to each other), which makes them couple also to gravity. Indeed, they were
explicitly coupled to gravity before the field redefinition ψ ≡ F and the physics does not change. The action (12) is recast as [49]

STMS = 1

2κ

∫
d4x

√−g

[
ψR − ω

ψ
∇αψ∇αψ − ZAB∇μφA∇μφB − V

]
+ S(m), (30)

where

ω = ω
(
ψ, φA

)
, 2ω + 3 > 0, (31)

ZAB = ZAB

(
ψ, φ J

)
> 0, (32)

V = V
(
ψ, φA

)
. (33)

The field equations for gμν, ψ, φA obtained by varying the action (30) are [49]

Gμν = 1

ψ

(∇μ∇νψ − gμν �ψ
) + ω

ψ2

(
∇μψ∇νψ − 1

2
gμν∇αψ∇αψ

)

+ ZAB

ψ

(
∇μφA∇νφ

B − 1

2
gμν∇αφA∇αφB

)
− gμνV

2ψ
+ κ

ψ
T (m)

μν , (34)

ZAB �φB =
(

1

2
∂AZBC − ∂B ZAC

)
∇αφC∇αφB + 1

2ψ
∂Aω ∇αψ∇αψ

− ∂ψ ZAB ∇αψ∇αφB + 1

2
∂AV , (35)

�ψ = ψ

2ω

(
∂ψV + ∂ψ ZAB ∇αφB∇αφA − R

)

− ∂Aω

ω
∇αψ∇αφA + (ω − ψ∂ψω)

2ψω
∇αψ∇αψ , (36)

where we have used the notation ∂A ≡ ∂/∂φA and ∂ψ ≡ ∂/∂ψ .
Using the metric field equations, we can express the Ricci scalar in terms of the matter and effective stress-energy tensors,

R = 3

ψ
�ψ + ω

ψ2 ∇αψ∇αψ

+ ZAB

ψ
∇αφA∇αφB + 2V

ψ
− κ

ψ
T (m) (37)

where T (m) ≡ gμνT (m)
μν . Then, the equation of motion for ψ turns into

�ψ = 1

3 + 2ω

[(
ψ∂ψ ZAB − ZAB

)∇αφA∇αφB

− 2∂Aω∇αψ∇αφA − ∂ψω∇αψ∇αψ

+ ψ∂ψV − 2V + κ T (m)
]
. (38)

Finally, we define the effective stress-energy tensor as

κ Tμν ≡ 1

ψ

(∇μ∇νψ − gμν �ψ
) + ω

ψ2

(
∇μψ∇νψ − 1

2
gμν∇αψ∇αψ

)

+ ZAB

ψ

(
∇μφA∇νφ

B − 1

2
gμν ∇αφA∇αφB

)
− gμνV

2ψ
. (39)

We can now move to the effective fluid picture.
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5 Comoving (Eckart) frame of ψ-fluid

Assume that the gradient of ψ is timelike; using

X ≡ −1

2
∇μψ∇μψ > 0 (40)

we define the effective fluid four-velocity

uμ = ∇μψ√
2X

(41)

which is normalized, uμuμ = −1. In general, the φA-fluids are tilted with respect to the ψ-fluid, i.e., uAμ and uμ have different
directions. Using the uμ of the ψ-fluid we perform the usual 3 + 1 splitting of spacetime into the time direction and the 3-space
“seen” by the observer with four-velocity uμ. This 3-space has Riemannian metric

hμν ≡ gμν + uμuν . (42)

The kinematic quantities (expansion tensor �μν , expansion scalar � = ∇μuμ, shear tensor σμν , shear scalar, and acceleration
u̇μ) associated with uμ are the same as those calculated for single-scalar-tensor gravity in [21]. In fact, their definitions are purely
kinematic and theory-independent since they do not use the field equations but only the definition (41) of uμ. These kinematic
quantities are straightforward, although lengthy to compute. Since they are used here, we report them in “Appendix A”.

The field Eq. (34) has the form of effective Einstein equations with an effective stress-energy tensor in their right-hand side,
which can be seen as the stress-energy tensor of a dissipative multi-component fluid of the form

Tμν = (P + ρ)uμuν + Pgμν + qμuν + qνuμ + πμν (43)

where

ρ = Tμνu
μuν (44)

is the effective energy density,

qμ = −Tαβu
αhμ

β (45)

is the effective heat current density describing heat conduction,

�αβ = Phαβ + παβ = Tμνhα
μhβ

ν (46)

is the effective stress tensor,

P = 1

3
gαβ�αβ = 1

3
hαβTαβ (47)

is the effective isotropic pressure, and the trace-free part of the stress tensor

παβ = �αβ − Phαβ (48)

is the effective anisotropic stress tensor. qμ, �αβ , and παβ are purely spatial with respect to uμ. The fluid description is obtained by
expressing the derivatives of ψ in terms of the relative effective fluid four-velocity (41) and kinematic quantities,

∇μψ =√
2X uμ , (49)

∇μX = − Ẋ uμ + hμν∇νX = −Ẋ uμ − 2X u̇μ , (50)

∇μ∇νψ = ∇μ

(√
2X uν

)

= √
2X ∇μuν − Ẋ√

2X
uμuν − √

2Xu̇μuν

= √
2X

(
σμν + 1

3
�hμν − 2u̇(μuν)

)
− Ẋ√

2X
uμuν . (51)

Furthermore, we have

�ψ = √
2X � + Ẋ√

2X
, (52)
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and therefore, the ψ-equation of motion reads

Ẋ√
2X

= − √
2X �

+ 1

3 + 2ω

[(
ψ∂ψ ZAB − ZAB

)∇αφA∇αφB

− 2
√

2X∂Aω uα∇αφA + 2∂ψωX

+ ψ∂ψV − 2V + κ T (m)
]
. (53)

We need these equations to eliminate the dependence of Tμν on Ẋ and on �ψ . Indeed, prior to using the equation of motion for ψ ,
one obtains

κTμν =
(

V

2ψ
+ Xω

ψ2 +
√

2X

ψ
�

)

uμuν

+
(

− V

2ψ
+ Xω

ψ2 − Ẋ√
2Xψ

− 2
√

2X

3ψ
�

)

hμν

− 2

√
2X

ψ
u̇(μuν) +

√
2X

ψ
σμν

+ ZAB∇μφA∇νφ
B

ψ
− gμν ZAB∇αφA∇αφB

2ψ
. (54)

Using the decomposition ∇μ = hμ
ν∇ν − uμ uν∇ν , defining φ̇A ≡ uα∇αφA, and taking into account the symmetry ZAB = ZBA,

the interacting terms contribute to the density, pressure, heat flux and anisotropic stress,

ZAB∇μφA∇νφ
B = ZAB

(
φ̇Aφ̇Buμuν + hμ

ρhν
σ ∇ρφA∇σ φB − 2h(μ

αuν)∇αφAφ̇B
)

(55)

and the stress-energy tensor reads

κ Tμν =
(

V

2ψ
+ Xω

ψ2 +
√

2X

ψ
� + ZAB

ψ
φ̇Aφ̇B + ZAB

2ψ
∇αφA∇αφB

)
uμuν

+
(

− V

2ψ
+ Xω

ψ2 − Ẋ√
2Xψ

− 2
√

2X

3ψ
� − ZAB

2ψ
∇αφA∇αφB

)
hμν

− 2
√

2X

ψ
u̇(μuν) − 2

ZAB

ψ
h(μ

αuν)∇αφAφ̇B

+
√

2X

ψ
σμν + ZAB

ψ
hμ

ρhν
σ ∇ρφA∇σ φB . (56)

Then, it is straightforward to obtain the effective fluid quantities

κ ρ = 1

2ψ2

[
ψ V + 2Xω + 2ψ

√
2X �

+ ψ ZAB

(
∇αφA∇αφB + 2φ̇Aφ̇B

)]
, (57)

κ qα = − hα
μuνT

μν

= −
√

2X

ψ
u̇α − ZAB

ψ
φ̇A hα

μ∇μφB , (58)

κ P = − V

2ψ
+ Xω

ψ2 − Ẋ√
2Xψ

− 2
√

2X

3ψ
�

− ZAB

2ψ
∇αφA∇αφB + ZAB

3ψ
hμν∇μφA∇νφb

=
√

2X

3ψ
� − κT (m)

ψ(3 + 2ω)
− (2ω − 1)

2ψ(3 + 2ω)
V + X

ψ2 ω

− (∂ψVψ + 2X∂ψω)

ψ(3 + 2ω)
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+ ZAB(3 − 2ω) − 6∂ψ ZABψ

6ψ(3 + 2ω)
∇αφB ∇αφA

+ 2
√

2X

ψ(3 + 2ω)
∂Aω φ̇A + ZAB

3ψ
φ̇Aφ̇B ,

κ πρσ =
√

2X

ψ
σρσ +

(
hμρhνσ − 1

3
hρσ hμν

)
ZAB

ψ
∇μ φA∇νφ

B

=
√

2X

ψ
σρσ + ZAB∇ρφA∇σ φB

ψ
− hρσ ZAB∇αφA∇αφB

3ψ

+ 2ZAB φ̇Bu(ρ∇σ)φA

ψ
− (gρσ − 2uρuσ )ZAB φ̇Aφ̇B

3ψ

=
√

2X

ψ
σρσ + ZAB∇ρφA∇σ φB

ψ
− hρσ ZAB∇αφA∇αφB

3ψ

+ 2ZAB φ̇Bu(ρhσ)α∇αφA

ψ
− (gρσ + 4uρuσ )ZAB φ̇Aφ̇B

3ψ
, (59)

where an overdot denotes differentiation along the lines of the ψ-fluid, i.e., φ̇A ≡ uα∇αφA.
At this point, we can identify the various contributions to the effective energy tensor as

P = Pinv + Pvis + Pφ (60)

= Pinv − ζ� + Pφ , (61)

ρ = ρinv + ρvis + ρφ (62)

= ρinv − 3ζ� + ρφ , (63)

qμ = −
√

2X

ψ
u̇μ + qμ

φ , (64)

πμν = − 2ησμν + π
μν
φ , (65)

where

κ Pinv = X

ψ2 ω − (2ω − 1)

2ψ(3 + 2ω)
V − κT (m)

ψ(3 + 2ω)

− (∂ψVψ + 2X∂ψω)

ψ(3 + 2ω)
,

κ Pφ = ZAB(3 − 2ω) − 6∂ψ ZABψ

6ψ(3 + 2ω)
∇αφB∇αφA

+ 2
√

2X

ψ(3 + 2ω)
∂Aω φ̇A + ZAB

3ψ
φ̇Aφ̇B ,

κ ρinv = 1

2ψ2

(
ψ V + 2Xω + 2ψ

√
2X

)
, (66)

κ ρφ = ZAB

2ψ

(
∇αφA∇αφB + 2φ̇Aφ̇B

)
, (67)

κ qμ
φ = − ZAB

ψ
φ̇A hμ

α∇αφB , (68)

κ π
μν
φ =

(
hμρhνσ − 1

3
hρσ hμν

)
ZAB

ψ
∇ρφA∇σ φB , (69)

while

ζ = −
√

2X

3κ ψ
, η =

√
2X

2κ ψ
(70)

are the bulk and shear viscosity coefficients, respectively.
In the particular case in which the Lagrangian is linear in X , the ψ-equation of motion reveals that �ψ does not contain

derivatives of the ψ-fluid four-velocity; therefore, it only contributes to the inviscid pressure. However, it contains φ-terms related
to the interactions.
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Finally, the φ-terms contribute only to the inviscid part of the effective stress-energy tensor (because Pφ and ρφ depend only on
first derivatives of the fields), to the heat flux, and to the shear viscosity. In the general case of the previous section, all the φ fields
contribute to both viscous and inviscid parts.

6 FLRW cosmology

Thus far, we have discussed the general tensor-multi-scalar theory of gravity, which conceivably has many applications. Given that
the most compelling motivation (although certainly not the only one) for modifying gravity is explaining the present acceleration of
the universe without the ad hoc dark energy, it is natural to discuss FLRW cosmology in the context of tensor-multi-scalar gravity.

Assume a spatially flat FLRW universe with line element

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2) (71)

in comoving coordinates (t, x, y, z), where the scale factor a(t) embodies the expansion history of the cosmos. Due to spatial
homogeneity and isotropy, the gravitational scalar fields of tensor-multi-scalar gravity depend only on time t and the anisotropic
stress tensor and heat current density vanish, πμν = 0, qμ = 0. It is natural to assume that the ψ-frame is the frame of the observers
who see the cosmic microwave background homogeneous and isotropic around them (apart from tiny temperature fluctuations
δT/T 
 10−5). Then, ∇μψ is timelike, and we restrict to situations in which it is also future-oriented. We have ψ = ψ(t),
φA = φA(t), X = −ψ̇2/2, and � = 3 H , where H ≡ ȧ/a is the Hubble function and an overdot denotes differentiation with
respect to the comoving time t. Since the anisotropic stresses and the heat flux must vanish, the only dissipative fluid feature
respecting the FLRW spatial symmetries is bulk viscosity. The fluid quantities reduce to

κρ = 1

2ψ2

[
ψV − ωψ̇2 + 6Hψ |ψ̇ | + ZAB φ̇Aφ̇Bψ

]

= ρinv + ρvis + ρφ, (72)

where

κρinv = 1

2ψ2

(
ψV − ωψ̇2), (73)

κρvis = 6ψ |ψ̇ |, (74)

κρφ = ZAB

2ψ
φ̇Aφ̇B . (75)

The pressure is

κP = − κT (m)

(2ω + 3)ψ
+ H |ψ̇ |

ψ
+ (1 − 2ω)

2ψ(2ω + 3)
− ωψ̇2

2ψ2

+ ψ̇2∂ψω − ψ∂ψV

ψ(2ω + 3)
+

[
2ZAB − ψ∂ψ ZAB

ψ(2ω + 3)

]
φ̇Aφ̇B , (76)

where P = Pinv + Pvis + Pφ with

κPinv = − ψ̇2ω

2ψ2 + (1 − 2ω)V

2ψ(2ω + 3)
− κT (m)

ψ(2ω + 3)
+ ψ̇2∂ψω − ψ∂ψV

ψ(2ω + 3)
, (77)

κPvis = H |ψ̇ |
ψ

, (78)

κPφ =
[
6ψ∂ψ ZAB − (3 − 2ω)ZAB

]

6ψ(2ω + 3)
φ̇Aφ̇B + 2|ψ̇ |

ψ(2ω + 3)
φ̇A∂Aω + ZAB

2ψ
φ̇Aφ̇B . (79)

The bulk viscosity coefficient is

ζ = − |ψ̇ |
3κψ

. (80)

It is well known that bulk viscosity can generate a negative pressure that could, in principle, accelerate the universe (cf., e.g., the
recent review [51]). The specific microphysical implementation of bulk viscosity during the present era of the universe is not simple.
For example, particle production in curved spacetime, which leads to bulk viscosity, is insufficient to explain away dark energy. In
tensor-multi-scalar gravity, bulk viscosity comes as an essential feature of the nonminimal coupling between the scalar fields and the
Ricci scalar. Although scalar fields and tensor-single-scalar gravity (perhaps in its f (R) incarnation [7–9]) have been widely used to
model the present cosmic acceleration and are the subjects of vast literatures (see, e.g., [10, 34, 52, 53]), tensor-multi-scalar gravity
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offers new possibilities. Modifying gravity at galactic scales has been proposed as a solution to the dark matter problem, even in
the Newtonian regime with the introduction of MOND gravity and in tensor-single-scalar theories, in which the extra gravitational
field produces Yukawa instead of Coulombic potentials (e.g., [53]). In tensor-multi-scalar gravity, the multiplet φA can in principle
explain simultaneously dark energy (through the “average” field ψ) and dark matter (through the multiplet fields φA)—Occam’s
razor would dictate the presence of a single field φ, but this is not a given.

The possibility of explaining simultaneously dark energy and dark matter by replacing GR with a tensor-multi-scalar theory is
intriguing and will be explored in future research. An appealing feature is that, in such a scenario, dark energy would unavoidably
couple to dark matter. Coupled dark energy and dark matter have been studied extensively and have recently been revived in attempts
to alleviate or solve the notorious Hubble tension plaguing the �CDM model of cosmology. A common problem of these scenarios
is that the coupling has to be introduced by hand and, usually, the formulation is not covariant, being proposed exclusively in FLRW
spaces [54]. Tensor-multi-scalar gravity, instead, is formulated as a general theory valid in arbitrary geometries and is completely
covariant. Furthermore, the coupling between the fields ψ and φA is not ad hoc but is a necessary feature of the theory. Specific
scenarios of coupled dark energy and dark matter in tensor-multi-scalar gravity necessarily require the specification of N , ZAB(
ψ, φA

)
, V

(
ψ, φA

)
, and ω

(
ψ, φA

)
: a detailed study is beyond the purpose of this paper.

7 Conclusions

The picture of the effective fluid equivalent of tensor-multi-scalar gravity that emerges from the previous sections is the following.
Because all the N original gravitational scalar fields couple explicitly to the Ricci scalar, they are automatically coupled to each
other. In addition, they may have explicit couplings to each other through the functions ZAB and V , but this is not necessary for
them to be mutually coupled. In the multi-fluid interpretation, this property could correspond to these fields being thermalized, but
this interpretation is not corroborated in any obvious way by the field equations and remains rather arbitrary.
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Appendix A: Kinematic quantities of the ψ-fluid

The (double) projection of the velocity gradient onto the 3-space orthogonal to uc

Vαβ ≡ hα
μ hβ

ν ∇νuμ , (81)

is decomposed into its symmetric and antisymmetric parts. The latter is identically zero because the ψ-fluid is derived from a scalar
field. The symmetric part is further decomposed into its trace-free and pure trace parts. This results in

Vαβ = �αβ + ωαβ = σαβ + �

3
hαβ + ωαβ , (82)

where the expansion tensor �αβ = V(αβ) is the symmetric part of Vαβ , � ≡ �ρ
ρ = ∇ρuρ is its trace, the vorticity tensor

ωαβ = V[αβ] = 0, and the symmetric, trace-free shear tensor is

σαβ ≡ �αβ − �

3
hαβ . (83)
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Expansion, vorticity, and shear are purely spatial,

�αβu
α = �αβu

β = ωαβ uα = ωαβ uβ = σαβu
α

= σαβu
β = 0. (84)

For general fluids, it is [34, 55]

∇βuα = σαβ + �

3
hαβ + ωαβ − u̇αuβ = Vαβ − u̇αuβ. (85)

The kinematic quantities of the ψ-fluid relevant for the present discussion are computed in [21] and are as follows:

∇βuα = 1
√−∇ρψ∇ρψ

(
∇α∇βψ − ∇αψ∇ρψ∇β∇ρψ

∇σ ψ∇σ ψ

)
, (86)

the acceleration is

u̇α ≡ uβ∇βuα = (−∇ρψ∇ρψ
)−2∇βψ

×
[
(−∇ρψ∇ρψ)∇α∇βψ + ∇ρψ∇β∇ρψ∇αψ

]
, (87)

Vαβ = ∇α∇βψ
(−∇ρψ∇ρψ

)1/2

+
(∇αψ∇β∇σ ψ + ∇βψ∇α∇σ ψ

)∇σ ψ
(−∇ρψ∇ρψ

)3/2

+ ∇δ∇σ ψ∇σ ψ∇δψ
(−∇ρψ∇ρψ

)5/2
∇αψ∇βψ. (88)

The expansion scalar reads

� = ∇ρu
ρ = �ψ

(−∇ρψ∇ρψ
)1/2

+ ∇α∇βψ∇αψ∇βψ
(−∇ρψ∇ρψ

)3/2 , (89)

while the shear tensor is

σαβ = (−∇ρψ∇ρψ
)−3/2[−(∇ρψ∇ρψ

)∇α∇βψ

−1

3

(∇αψ∇βψ − gαβ ∇σ ψ∇σ ψ
)
�ψ

− 1

3

(
gαβ + 2∇αψ∇βψ

∇ρψ∇ρψ

)
∇σ ∇τψ∇τψ∇σ ψ

+(∇αψ∇σ ∇βψ + ∇βψ∇σ ∇αψ
)∇σ ψ

]
. (90)
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