Skip to main content
Log in

Effect of minimal length on Landau diamagnetism and de Haas–van Alphen effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study Landau diamagnetism in the framework of generalised uncertainty principle(GUP). We calculate the correction to magnetisation and susceptibility by constructing the grand partition function of diamagnetic material in this framework. We explicitly show that Curie’s law gets a temperature-independent correction which vanishes when quantum gravity effects are neglected. We further consider the low-temperature limit to find how GUP affects the de Haas–van Alphen effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

Our manuscript has no associated data.

References

  1. D. Amati, M. Ciafaloni, G. Veneziano, Can spacetime be probed below the string size? Phys. Lett. B 216(1), 41–47 (1989)

    Article  ADS  Google Scholar 

  2. D.J. Gross, P.F. Mende, The high-energy behavior of string scattering amplitudes. Phys. Lett. B 197, 129–134 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  3. D.J. Gross, P.F. Mende, String theory beyond the planck scale. Nucl. Phys. B 303, 407–454 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Tawfik, A. Diab, Generalized uncertainty principle: approaches and applications. Int. J. Modern Phys. D 23(12), 1430025 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. K. Konishi, G. Paffuti, P. Provero, Minimum physical length and the generalized uncertainty principle in string theory. Phys. Lett. B 234, 276–284 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  6. A.F. Ali, S. Das, E.C. Vagenas, Discreteness of space from the generalized uncertainty principle. Phys. Lett. B 678(5), 497–499 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. A.F. Ali, S. Das, E.C. Vagenas, Proposal for testing quantum gravity in the lab. Phys. Rev. D 84, 044013 (2011)

    Article  ADS  Google Scholar 

  8. G. Amelino-Camelia, Doubly-special relativity: first results and key open problems. Int. J. Modern Phys. D 11(10), 1643–1669 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. L.J. Garay, Quantum gravity and minimum length. Int. J. Modern Phys. A 10(02), 145–165 (1995)

    Article  ADS  Google Scholar 

  10. M. Maggiore, A generalized uncertainty principle in quantum gravity. Phys. Lett. B 304(1–2), 65–69 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  11. F. Scardigli, Generalized uncertainty principle in quantum gravity from micro-black hole gedanken experiment. Phys. Lett. B 452(1–2), 39–44 (1999)

    Article  ADS  Google Scholar 

  12. A. Kempf, G. Mangano, R.B. Mann, Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108–1118 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Das, E.C. Vagenas, Universality of quantum gravity corrections. Phys. Rev. Lett. 101, 221301 (2008)

    Article  ADS  Google Scholar 

  14. A.N. Tawfik, A.M. Diab, A review of the generalized uncertainty principle. Rep. Prog. Phys. 78(12), 126001 (2015)

    Article  ADS  Google Scholar 

  15. G. Gecim, Y. Sucu, The gup effect on hawking radiation of the 2+1 dimensional black hole. Phys. Lett. B 773, 391–394 (2017)

    Article  ADS  MATH  Google Scholar 

  16. F. Scardigli, G. Lambiase, E.C. Vagenas, Gup parameter from quantum corrections to the Newtonian potential. Phys. Lett. B 767, 242–246 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. B. Majumder, Effects of gup in quantum cosmological perfect fluid models. Phys. Lett. B 699(5), 315–319 (2011)

    Article  ADS  Google Scholar 

  18. A. Övgün and K. Jusufi. The effect of the GUP on massive vector and scalar particles tunneling from a warped DGP gravity black hole. Eur. Phys. J. Plus, 132(7), 2017

  19. M. Maziashvili, Black hole remnants due to gup or quantum gravity? Phys. Lett. B 635(4), 232–234 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. M. Faizal, A.F. Ali, A. Nassar, Generalized uncertainty principle as a consequence of the effective field theory. Phys. Lett. B 765, 238–243 (2017)

    Article  ADS  MATH  Google Scholar 

  21. L. Menculini, O. Panella, P. Roy, Exact solutions of the (\(2\mathbf{+} 1\)) dimensional dirac equation in a constant magnetic field in the presence of a minimal length. Phys. Rev. D 87, 065017 (2013)

    Article  ADS  Google Scholar 

  22. P. Pedram, A higher order GUP with minimal length uncertainty and maximal momentum II: applications. Phys. Lett. B 718(2), 638–645 (2012)

    Article  ADS  Google Scholar 

  23. M. Faizal, B.P. Mandal, Imaginary interactions with minimum length. Gravit. Cosmol. 21(4), 270–272 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. A. Bhat, S. Dey, M. Faizal, C. Hou, Q. Zhao, Modification of schrödinger–newton equation due to braneworld models with minimal length. Phys. Lett. B 770, 325–330 (2017)

    Article  ADS  Google Scholar 

  25. B. Bagchi, A. Fring, Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems. Phys. Lett. A 373(47), 4307–4310 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. S. Ghosh, P. Roy, “Stringy’’ coherent states inspired by generalized uncertainty principle. Phys. Lett. B 711(5), 423–427 (2012)

    Article  ADS  Google Scholar 

  27. S. Dey, V. Hussin, Entangled squeezed states in noncommutative spaces with minimal length uncertainty relations. Phys. Rev. D 91, 124017 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Dey, A. Fring, L. Gouba, P.G. Castro, Time-dependent \(q\)-deformed coherent states for generalized uncertainty relations. Phys. Rev. D 87, 084033 (2013)

    Article  ADS  Google Scholar 

  29. S. Dey, A. Fring, Squeezed coherent states for noncommutative spaces with minimal length uncertainty relations. Phys. Rev. D 86, 064038 (2012)

    Article  ADS  Google Scholar 

  30. D. Chen, W. Houwen, H. Yang, S. Yang, Effects of quantum gravity on black holes. Int. J. Modern Phys. A 29(26), 1430054 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. K. Nozari, M. Karami, Minimal length and generalized Dirac equation. Modern Phys. Lett. A 20(40), 3095–3103 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. S. Das, E.C. Vagenas, Phenomenological implications of the generalized uncertainty principle. Can. J. Phys. 87, 233–240 (2009)

    Article  ADS  Google Scholar 

  33. P. Bosso, S. Das, R.B. Mann, Planck scale corrections to the harmonic oscillator, coherent, and squeezed states. Phys. Rev. D 96, 066008 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Magueijo, L. Smolin, Gravity’s rainbow. Class. Quantum Gravity 21(7), 1725–1736 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. V. Tyagi, S.K. Rai, B.P. Mandal, GUP corrections to the Dirac oscillator in the external magnetic field. EPL 128(3), 30004 (2019)

    Article  Google Scholar 

  36. H. Verma, T. Mitra, B.P. Mandal, Schwinger’s model of angular momentum with GUP. EPL 123(3), 30009 (2018)

    Article  ADS  Google Scholar 

  37. Khireddine Nouicer, Effect of minimal lengths on electron magnetism. J. Phys. A: Math. Theor. 40(9), 2125 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. R.A. El-Nabulsi, Some implications of three generalized uncertainty principles in statistical mechanics of an ideal gas. Eur. Phys. J. Plus 135(1), 34 (2020)

    Article  Google Scholar 

  39. B. Hamil, B.C. Lütfüoğlu, New higher-order generalized uncertainty principle: applications. Int. J. Theor. Phys. 60(8), 2790–2803 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. B. Hamil, B.C. Lütfüoğlu, GUP to all orders in the planck length: some applications. Int. J. Theor. Phys. 61(7), 202 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. I. Pikovski, M.R. Vanner, M. Aspelmeyer, M.S. Kim, Č Brukner, Probing planck-scale physics with quantum optics. Nat. Phys. 8(5), 393–397 (2012)

    Article  Google Scholar 

  42. P. Bosso, S. Das, I. Pikovski, and M.R. Vanner, Amplified transduction of planck-scale effects using quantum optics. Phys. Rev. A, 96(2), 2017

  43. S. Bensalem, D. Bouaziz, On the thermodynamics of relativistic ideal gases in the presence of a maximal length. Phys. Lett. A 384(36), 126911 (2020)

    Article  MathSciNet  Google Scholar 

  44. K. Huang, Statistical Mechanics (John Wiley & Sons, Hoboken, 2008)

    Google Scholar 

  45. W. Greiner, L. Neise, H. Stöcker, Thermodynamics and Statistical Mechanics (Springer Science & Business Media, Berlin, 2012)

    MATH  Google Scholar 

  46. A.F. Ali, Minimal length in quantum gravity, equivalence principle and holographic entropy bound. Class. Quantum Gravity 28(6), 065013 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. A. Halder, S. Gangopadhyay, Phase–space noncommutativity and the thermodynamics of the Landau system. Mod. Phys. Lett. A 32(20), 1750102 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

MA thanks Aditya Dwivedi and Kajal Singh for useful discussions. BPM acknowledges the research grant for faculty under IoE Scheme (Number 6031) of Banaras Hindu University, Varanasi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhabani Prasad Mandal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhishek, M., Mandal, B.P. Effect of minimal length on Landau diamagnetism and de Haas–van Alphen effect. Eur. Phys. J. Plus 138, 370 (2023). https://doi.org/10.1140/epjp/s13360-023-03975-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03975-6

Navigation