Skip to main content
Log in

Approximate Noether symmetries of the geodetic Lagrangian of spherically symmetric spacetimes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Spherical symmetry of heavenly bodies is an important property in gravitational theories. All celestial bodies are approximately spherical shapes due to their gravitational pull in all directions. However, observation shows that the earth and other planets are not perfect spheres, they are flattened at poles and bulged at their equators. The black holes are considered to be spherical in shape. Their accelerated motion radiate mass in the form of gravitational waves. It is proved by Hawking that the black holes evaporate in radiation called Hawking radiation. It means that their mass-energy momentum tensor is a decreasing function of time. But all the known black holes solutions are static. To get the time dependent mass-energy momentum tensor we need a time dependent black hole solution of the Einstein field equations. To form the black hole spacetime time dependent, we perturbed the general spherically symmetric spacetime metric by a general time dependent conformal factor. Then use the Noether theorem and obtain a particular time dependent conformal factor without losing the spherical symmetry of the spacetimes produced by heavenly bodies. We define several theorems in this regard, which will provide a way to convert the static form of spherically symmetric static spacetimes (particularly black holes solutions) into non static spacetimes (non static black holes solutions). All spherically symmetric distributions that satisfy certain conditions will admit the time conformal approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author.

References

  1. G.D. Birkhoff, Relativity and Modern Physics (Harvard University Press, Cambridge, 1923)

    MATH  Google Scholar 

  2. K.A. Bronnikov, V.N. Melnikov, The Birkhoff theorem in multidimensional gravity. Gen. Relativ. Gravit. 27(5), 465–474 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. J.T. Jebsen, On the general spherically symmetric solutions of Einstein’s gravitational equations in vacuo. Gen. Relativ. Gravit. 37(12), 2253–2259 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M.R. Wald, General Relativity (The Univeristy of Chicago Press, Chicago, 1984)

    Book  MATH  Google Scholar 

  5. C.R. Tolman, Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939)

    Article  ADS  MATH  Google Scholar 

  6. J.R. Oppenheimer, G.M. Volkoff, On massive neutron cores. Phys. Rev. 55, 374–381 (1939)

    Article  ADS  MATH  Google Scholar 

  7. J.M. Heinzle, N. Röhr, C. Uggla, Dynamical systems approach to relativistic spherically symmetric static perfect fluid models. Class. Quantum Gravity 20, 4567–4586 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. S. Mashchenko, A. Sills, M.H. Couchman, Constraining global properties of the Draco Dwarf spheroidal galaxy. Astrophys. J. 640(1), 252 (2006)

    Article  ADS  Google Scholar 

  9. A. Einstien, Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften, Berlin, pp. 154–167 (1918)

  10. A. Einstien, Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften Berlin, pp. 688–696 (1916)

  11. A. Einstien, N. Rosen, J. Frankl. Inst. 223, 43–54 (1937)

    Article  ADS  Google Scholar 

  12. B.P. Abbott et al., LIGO scientific collaboration and Virgo collaboration. Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  13. F. Acernese et al., Class. Quantum Grav. 32, 024001 (2015)

    Article  ADS  Google Scholar 

  14. M.C. Miller, N. Yunes, Nature 568, 469–476 (2019)

    Article  ADS  Google Scholar 

  15. Y. Gong, E. Papantonopoulos, Z. Yi, Eur. Phys. J. C 78, 738 (2018)

    Article  ADS  Google Scholar 

  16. J.S. Hazboun et al., ApJ 890, 108 (2020)

    Article  ADS  Google Scholar 

  17. A. Ghoshal, A. Salvio, J. High Energ. Phys. 2020, 49 (2020)

    Article  Google Scholar 

  18. R. Abbott et al., ApJL 896, L44 (2020)

    Article  ADS  Google Scholar 

  19. V.A. Baikov, R.K. Gazizov, N.H. Ibragimov, Math. USSR Sbornik 64, 427–441 (1989)

    Article  MathSciNet  Google Scholar 

  20. V.A. Baikov, R.K. Gazizov, N.H. Ibragimov, Differ. Equ. 29, 1487–1504 (1993)

    Google Scholar 

  21. F. Ali, T. Feroze, Theor. Math. Phys. 193(2), 1703–1714 (2017)

    Article  Google Scholar 

  22. F. Ali, W.K. Mashwani, M.A. Jan, Mod. Phys. Lett. A 33(21), 1850123 (2018)

    Article  ADS  Google Scholar 

  23. F. Ali, T. Feroze, Int. J. Geom. Methods Mod. Phys. 12, 1550124 (2015)

    Article  MathSciNet  Google Scholar 

  24. A. Jawad, F. Ali, U. Shehzad, G. Abbas, Eur. Phys. J. C 76, 586 (2016)

    Article  ADS  Google Scholar 

  25. S.K. Amir, F. Ali, Phys. Dark. Univ. 26, 100389 (2019)

    Article  Google Scholar 

  26. S.K. Amir, F. Ali, Phys. Dark. Univ. 30, 100714 (2020)

    Article  Google Scholar 

  27. F. Ali, T. Feroze, Int. J. Theor. Phys. 52, 3329–3342 (2013)

    Article  Google Scholar 

  28. F. Ali, T. Feroze, S. Ali, Theor. Math. Phys. 184, 92 (2015)

    Article  Google Scholar 

  29. F. Ali, T. Feroze, Mathematics 4, 50 (2016)

    Article  Google Scholar 

  30. E. Noether, Nachr. Koing. Gesell. Wissen., Gottinngen, Math.-Phys. KI.Heft 2, 235. (English translation in Transport Theory and Statistical Physics, 1(3), 186, (1971))

  31. D. Christodoulou, Ann. Math. 140(3), 607–653 (1994)

    Article  MathSciNet  Google Scholar 

  32. D. Christodoulou, Ann. Math. 149(1), 183–217 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahir Shah.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, F., Ghafar, M.S., Khan, M.A. et al. Approximate Noether symmetries of the geodetic Lagrangian of spherically symmetric spacetimes. Eur. Phys. J. Plus 138, 253 (2023). https://doi.org/10.1140/epjp/s13360-023-03879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03879-5

Navigation