Skip to main content
Log in

Perturbation of exchange interaction in Nd–Ni spin subsystem of nickelate

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A spin subsystem of a nano-sized NdNi\(_8\) of a nickelate superconductor is chosen to calculate its contribution in controlling magnetic phase transition. The role of the spin distribution of NdNi\(_8\) in controlling magnetization (M) is studied within the framework of the mean field theory (MFT). Two different levels of perturbation in the exchange interaction between spins of Ni and Nd have been used. M (H, T) has been calculated numerically for perturbations of 0, 0.15 and 0.30 with respect to an unperturbed \(J_0\). Changes in M (H) in the range of T = 10.0–300.0 K have been found to be very sensitive to perturbation. Possibility of a magnetic phase transition has been found which is sensitive to the perturbation of the exchange integral. Sensitivity of the broadening of the phase transition is weaker for the level of perturbation in comparison with that for the magnetic field. Susceptibility is also calculated and analysed to understand how perturbed exchange integral affects magnetic phase transition in spin distribution of NdNi\(_8\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. Z. Liu, Z. Ren, W. Zhu, Z. Wang, J. Yang, NPJ Quantum Mater 5, 31 (2020)

    Article  ADS  Google Scholar 

  2. Q. Li, C. He, J. Si, X. Zhu, Y. Zhang, H.H. Wen, Commun. Mater. 1, 16 (2020)

    Article  Google Scholar 

  3. M.Y. Choi, K.W. Lee, W.E. Pickett, Phys. Rev. B 101, 020503 (2020)

    Article  ADS  Google Scholar 

  4. Y. Ji, J. Liu, L. Li, J. Appl. Phys. 130, 060901 (2021)

    Article  ADS  Google Scholar 

  5. E. Been, W.-S. Lee, H.Y. Hwang, Y. Cui, J. Zaanen, T. Devereaux, B. Moritz, C. Jia, Phys. Rev. X 11, 011050 (2021)

    Google Scholar 

  6. K. Karl’ová, J. Strečka, M.L. Lyra, Phys. Rev. E 100, 042127 (2019)

    Article  ADS  Google Scholar 

  7. S. Haldar, R.K. Saha, A.K. Ghosh, Phys. Lett. A 460, 128618 (2023)

    Article  Google Scholar 

  8. R. Zhang, C. Lane, B. Singh, J. Nokelainen, B. Barbiellini, R.S. Markiewicz, A. Bansil, J. Sun, J. Phys. Commun. 4, 118 (2021)

    Article  Google Scholar 

  9. X.M. Zhang, B. Li, J. Solid State Chem. 306, 122806 (2022)

    Article  Google Scholar 

  10. S. Haldar, A.K. Ghosh, J. Supercond. and Nov. Magn. 33, 3217 (2020)

    Article  Google Scholar 

  11. S. Haldar, A.K. Ghosh, J. Supercond. Nov. Magn. 34, 3217 (2021)

    Article  Google Scholar 

  12. S. Haldar, R.K. Saha, A.K. Ghosh, Eur. Phys. J. Plus 136, 1099 (2021)

    Article  Google Scholar 

  13. Y. Nomura, R. Arita, Rep. Prog. Phys. 85, 052501 (2022)

    Article  ADS  Google Scholar 

  14. Y. Nomura, T. Nomoto, M. Hirayama, R. Arita, Phys. Rev. Res. 2, 043144 (2020)

    Article  Google Scholar 

  15. R.C. Taylor, T.R. McGuire, J.M.D. Coey, J. Appl. Phys. 49, 2885 (2008)

    Article  ADS  Google Scholar 

  16. H. Lin, D.J. Gawryluk, Y.M. Klein, S. Huangfu, E. Pomjakushina, F.V. Rohr, A. Schilling, New J. Phys. 24, 013022 (2022)

    Article  ADS  Google Scholar 

  17. R.A. Ortiz, P. Puphal, M. Klett, F. Hotz, R.K. Kremer, H. Trepka, M. Hemmida, H.-A. Krug von Nidda, M. Isobe, R. Khasanov, H. Luetkens, P. Hansmann, B. Keimer, T. Schäfer, M. Hepting, Phys. Rev. Res. 4, 023093 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

RKS acknowledges the University Grants Commission (UGC), Government of India, for the fellowship, and SH acknowledges the Department of Science and Technology (DST), Government of India, for the INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar Ghosh.

Additional information

The original version of this article was revised to correct author name A. J. Ghosh to A. K. Ghosh in references 10, 11 and 12.

Appendix

Appendix

Mean value of a thermodynamic quantity (f) can be written with the help of the partition function as follows: \(\left<f\right>=\frac{{{\,\textrm{tr}\,}}{fe^{\beta {E}}}}{{{\,\textrm{tr}\,}}{e^{\beta {E}}}}\). Applying the MFT, we get \(\left<S\right>\) as

$$\begin{aligned} \left<S\right>=\frac{{{\,\textrm{tr}\,}}{Se^{\beta S{\mathcal {H}}_{eff}}}}{{{\,\textrm{tr}\,}}{e^{\beta S{\mathcal {H}}_{eff}}}}=\vert S\vert \tanh {\beta S {\mathcal {H}}_{eff}}. \end{aligned}$$
(5)

We have \({\mathcal {H}}_{eff}\) given as follows:

$$\begin{aligned}{} & {} {\mathcal {H}}^{j}_{eff} = 2J \big ( \left<S_i\right> + \left<S_k\right>\big )+\mu _{B}H \\{} & {} {\mathcal {H}}^{k}_{eff} = 2J \left<S_j\right> +4\mu _{B}H \\{} & {} {\mathcal {H}}^{i}_{eff} = 2J \left<S_j\right> +4\mu _{B}H. \end{aligned}$$

Now substituting \({\mathcal {H}}_{eff}\) values in Eq. (5), we obtain the following expressions for \(\left<S\right>\) :

$$\begin{aligned}{} & {} \left<S_j\right> = 2 \tanh \left[ \frac{2}{k_{B}T}\left( 2J\left<S_k\right>+2J\left<S_i\right>+\mu _{\text {B}} H\right) \right] \\{} & {} \left<S_k\right> = \tanh \left[ \frac{1}{k_{B}T}\left( 2J\left<S_j\right>+4\mu _{\text {B}} H\right) \right] \\{} & {} \left<S_i\right> = \tanh \left[ \frac{1}{k_{B}T}\left( 2J\left<S_j\right>+4\mu _{\text {B}} H\right) \right]. \end{aligned}$$

Total average spin (\(\left<S\right>_{Tot}\)) is taken as,

$$\begin{aligned} \left<S\right>_{Tot} = \left<S_j\right> + 4\left<S_k\right> + 4\left<S_i\right>. \end{aligned}$$

Magnetization (M) of the system is, \( M = ng\mu _{\text {B}}\left<S\right>_{Tot}\)

$$\begin{aligned} M= & {} (1/V)g\mu _{\text {B}} \left[ 2\tanh \left[ \frac{2}{k_{B}T}\left( 2J\left<S_k\right>+2J\left<S_i\right>+\mu _{\text {B}} H \right) \right] + 4 \tanh \left[ \frac{1}{k_{B}T}\left( 2J\left<S_j\right>+4\mu _{\text {B}} H \right) \right] + 4 \tanh \left[ \frac{1}{k_{B}T}\left( 2J\left<S_j\right>+4\mu _{\text {B}} H\right) \right] \right] \nonumber \\= & {} (1/V)g\mu _{\text {B}} \left[ 2\tanh \left[ \frac{2}{k_{B}T}\left( 2J\left<S_k\right>+2J\left<S_i\right>+\mu _{\text {B}} H \right) \right] + 8\tanh \left[ \frac{1}{k_{B}T}\left( 2J\left<S_j\right>+4\mu _{\text {B}} H \right) \right] \right] \end{aligned}$$
(6)

\(n = N/V\), number of spins per unit volume, \(g=2\) and \( \mu _{\text {B}} = 9.27\times 10^{-24}\) J/T.

Susceptibility (\(\chi \)) has been calculated by the derivative of M(H).

$$\begin{aligned} \chi = \mu _{\text {0}}\left( \frac{\partial M}{\partial H} \right) _T = \mu _{\text {0}}(1/V)g\mu _{\text {B}}\left( \frac{\partial \left<S\right>_{Tot} }{\partial H}\right) _T. \end{aligned}$$
(7)

We obtain \( \left<S\right>^{'} \), by taking the derivative with respect to H,

$$\begin{aligned} \frac{\partial \left<S_j\right>}{\partial H}= & {} \frac{4.0}{k_{B}T} \frac{\left[ 2J^{'}\big (\left<S_{k}\right>+\left<S_{i}\right>\big ) + 2J\big ( \left<S_{k}\right>^{'}+ \left<S_{i}\right>^{'}\big ) + \mu _{B} \right] }{\cosh ^2\left[ \frac{2}{k_{B}T}\big (2j\left<S_{k}\right>+2j\left<S_{i}\right> +\mu _{B}H \big )\right] } \end{aligned}$$
(8)
$$\begin{aligned} \frac{\partial \left<S_k\right>}{\partial H}= & {} \frac{\partial \left<S_i\right>}{\partial H}=\frac{1}{k_{B}T} \frac{\left[ 2J^{'}\left<S_j\right> + 2J\left<S_j\right>^{'} + 4\mu _{B} \right] }{\cosh ^{2} \left[ \frac{1}{k_{\text {B}}T} \left( 2J\left<S_{j}\right>+4\mu _{\text {B}}B \right) \right] }. \end{aligned}$$
(9)

Substituting (8) and (9) in (7), we have an expression for the susceptibility as follows:

$$\begin{aligned} \chi = \mu _{\text {0}}(1/V)g\mu _{\text {B}} \left[ \frac{2}{k_{B}T} \frac{\left[ 2J^{'}\left<S_j\right> + 2J\left<S_j\right>^{'} + 4\mu _{B} \right] }{\cosh ^{2} \left[ \frac{1}{k_{\text {B}}T} \left( 2J\left<S_{j}\right>+4\mu _{\text {B}}H \right) \right] } + \frac{4.0}{k_{B}T} \frac{\left[ 2J^{'}\big (\left<S_{k}\right>+\left<S_{i}\right>\big ) + 2J\big ( \left<S_{k}\right>^{'}+ \left<S_{i}\right>^{'}\big ) + \mu _{B} \right] }{\cosh ^2\left[ \frac{2}{k_{B}T}\big (2j\left<S_{k}\right>+2j\left<S_{i}\right>+\mu _{B}H \big )\right] } \right]. \end{aligned}$$
(10)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, R.K., Halder, S. & Ghosh, A.K. Perturbation of exchange interaction in Nd–Ni spin subsystem of nickelate. Eur. Phys. J. Plus 138, 247 (2023). https://doi.org/10.1140/epjp/s13360-023-03876-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03876-8

Navigation