Skip to main content

Advertisement

Log in

Mathematical model and analysis of monkeypox with control strategies

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper takes into consideration the development and rigorous analysis of a compartmental mathematical model of monkeypox dynamics in the presence of quarantine and isolation compartments. The newly proposed model is governed by 7-dimensional system of ordinary differential equations which describes the monkeypox transmission and spread between the interacting populations of human and rodent. In view of positivity and boundedness of solutions, the model is shown to be mathematically well posed. The control monkeypox reproduction number, \({\mathscr {R}}_0\), is obtained using the next generation matrix approach. The threshold quantity is used to investigate the stability analysis of the monkeypox-free equilibrium. Further qualitative analysis suggests that the model undergoes the phenomenon of backward bifurcation in the presence of the fraction of exposed individuals that are quarantined (\(\kappa \)) whenever \({\mathscr {R}}_0\) of the model is below unity. By employing center manifold theory, the possibility of ruling out the occurrence of backward bifurcation when \(\kappa =0\) is shown. The global asymptotic behaviour of the model around the monkeypox-free equilibrium is established using Lyapunov function method. The respective sensitivity index of individual model parameter with respect to \({\mathscr {R}}_0\) is obtained to gain epidemiological insights into intervention strategies for monkeypox prevention and control. The effects of variation in the effective contact rate of human to human and other key parameters on the disease transmission dynamics under different scenarios are demonstrated quantitatively. The findings of this study show that, we can attain a monkeypox-free state if quarantine and isolation guidelines are carefully followed, as well as preventative measures that minimize the effective contact rates between humans and rodents as well as between rodents and humans during the monkeypox outbreak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

All data generated or analysed during this study are included in this article.

References

  1. S. Marennikova, E.M. Šeluhina, N. Mal’Ceva, K. Čimiškjan, G. Macevič, Isolation and properties of the causal agent of a new variola-like disease (monkeypox) in man. Bull. World Health Organ. 46(5), 599 (1972)

    Google Scholar 

  2. C. Van Dijck, N. Hens, C. Kenyon, A. Tsoumanis, The roles of unrecognized monkeypox cases, contact isolation and vaccination in determining epidemic size in belgium. A modelling study. medRxiv (2022)

  3. L.A. Learned, M.G. Reynolds, D.W. Wassa, Y. Li, V.A. Olson, K. Karem, L.L. Stempora, Z.H. Braden, R. Kline, A. Likos et al., Extended interhuman transmission of monkeypox in a hospital community in the republic of the congo, 2003. Am. J. Trop. Med. Hyg. 73(2), 428–434 (2005)

    Article  Google Scholar 

  4. G.D. Huhn, A.M. Bauer, K. Yorita, M.B. Graham, J. Sejvar, A. Likos, I.K. Damon, M.G. Reynolds, M.J. Kuehnert, Clinical characteristics of human monkeypox, and risk factors for severe disease. Clin. Infect. Dis. 41(12), 1742–1751 (2005)

    Article  Google Scholar 

  5. Z. Ježek, B. Grab, M. Szczeniowski, K. Paluku, M. Mutombo, Clinico-epidemiological features of monkeypox patients with an animal or human source of infection. Bull. World Health Organ. 66(4), 459 (1988)

    Google Scholar 

  6. K.N. Durski, A.M. McCollum, Y. Nakazawa, B.W. Petersen, M.G. Reynolds, S. Briand, M.H. Djingarey, V. Olson, I.K. Damon, A. Khalakdina, Emergence of monkeypox-west and central africa, 1970–2017. Morb. Mortal. Wkly. Rep. 67(10), 306 (2018)

    Article  Google Scholar 

  7. A. Vaughan, E. Aarons, J. Astbury, S. Balasegaram, M. Beadsworth, C.R. Beck, M. Chand, C. O’connor, J. Dunning, S. Ghebrehewet et al., Two cases of monkeypox imported to the united kingdom, september 2018. Eurosurveillance 23(38), 1800509 (2018)

    Article  Google Scholar 

  8. A. Vaughan, E. Aarons, J. Astbury, T. Brooks, M. Chand, P. Flegg, A. Hardman, N. Harper, R. Jarvis, S. Mawdsley et al., Human-to-human transmission of monkeypox virus, United Kingdom, october 2018. Emerg. Infect. Dis. 26(4), 782 (2020)

    Article  Google Scholar 

  9. N. Erez, H. Achdout, E. Milrot, Y. Schwartz, Y. Wiener-Well, N. Paran, B. Politi, H. Tamir, T. Israely, S. Weiss et al., Diagnosis of imported monkeypox, Israel, 2018. Emerg. Infect. Dis. 25(5), 980 (2019)

    Article  Google Scholar 

  10. S.E.F. Yong, O.T. Ng, Z.J.M. Ho, T.M. Mak, K. Marimuthu, S. Vasoo, T.W. Yeo, Y.K. Ng, L. Cui, Z. Ferdous et al., Imported monkeypox, Singapore. Emerg. Infect. Dis. 26(8), 1826 (2020)

    Article  Google Scholar 

  11. A. Yinka-Ogunleye, O. Aruna, M. Dalhat, D. Ogoina, A. McCollum, Y. Disu, I. Mamadu, A. Akinpelu, A. Ahmad, J. Burga et al., Outbreak of human monkeypox in Nigeria in 2017–18: a clinical and epidemiological report. Lancet Infect. Dis. 19(8), 872–879 (2019)

    Article  Google Scholar 

  12. Center for Disease Control, Interim clinical guidance for the treatment of monkeypox, Available from: https://www.cdc.gov/poxvirus/monkeypox/index.html/

  13. M. Bhatti, S.I. Abdelsalam, Scientific breakdown of a ferromagnetic nanofluid in hemodynamics: enhanced therapeutic approach. Math. Model. Nat. Phenom. 17, 44 (2022)

    Article  MathSciNet  Google Scholar 

  14. S.I. Abdelsalam, A. Zaher, On behavioral response of ciliated cervical canal on the development of electroosmotic forces in spermatic fluid. Math. Model. Nat. Phenom. 17, 27 (2022)

    Article  MathSciNet  Google Scholar 

  15. V. Sridhar, K. Ramesh, M. Gnaneswara Reddy, M.N. Azese, S.I. Abdelsalam, On the entropy optimization of hemodynamic peristaltic pumping of a nanofluid with geometry effects. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2061747

    Article  Google Scholar 

  16. O. James Peter, M.M. Ojo, R. Viriyapong, F. Abiodun Oguntolu, Mathematical model of measles transmission dynamics using real data from Nigeria. J. Differ. Equ. Appl. (2022). https://doi.org/10.1080/10236198.2022.2079411

    Article  MathSciNet  MATH  Google Scholar 

  17. M.M. Ojo, O.J. Peter, E.F.D. Goufo, H.S. Panigoro, F.A. Oguntolu, Mathematical model for control of tuberculosis epidemiology. J. Appl. Math. Comput. 1–19 (2022)

  18. O.J. Peter, A. Yusuf, M.M. Ojo, S. Kumar, N. Kumari, F.A. Oguntolu, A mathematical model analysis of meningitis with treatment and vaccination in fractional derivatives. Int. J. Appl. Comput. Math. 8(3), 1–28 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. O.J. Peter, S. Qureshi, A. Yusuf, M. Al-Shomrani, A.A. Idowu, A new mathematical model of COVID-19 using real data from Pakistan. Results Phys. 24, 104098 (2021)

    Article  Google Scholar 

  20. A.I. Abioye, O.J. Peter, H.A. Ogunseye, F.A. Oguntolu, K. Oshinubi, A.A. Ibrahim, I. Khan, Mathematical model of COVID-19 in Nigeria with optimal control. Results in Phys. 28, 104598 (2021)

    Article  Google Scholar 

  21. O.J. Peter, M.O. Ibrahim, H.O. Edogbanya, F.A. Oguntolu, K. Oshinubi, A.A. Ibrahim, T.A. Ayoola, J.O. Lawal, Direct and indirect transmission of typhoid fever model with optimal control. Results in Phys. 27, 104463 (2021)

    Article  Google Scholar 

  22. O.J. Peter, A. Yusuf, K. Oshinubi, F.A. Oguntolu, J.O. Lawal, A.I. Abioye, T.A. Ayoola, Fractional order of pneumococcal pneumonia infection model with caputo fabrizio operator. Results in Phys. 29, 104581 (2021)

    Article  Google Scholar 

  23. R. Grant, L.-B.L. Nguyen, R. Breban, Modelling human-to-human transmission of monkeypox. Bull. World Health Organ. 98(9), 638 (2020)

    Article  Google Scholar 

  24. S.V. Bankuru, S. Kossol, W. Hou, P. Mahmoudi, J. Rychtář, D. Taylor, A game-theoretic model of monkeypox to assess vaccination strategies. PeerJ 8, e9272 (2020)

    Article  Google Scholar 

  25. S. Somma, N. Akinwande, U. Chado, A mathematical model of monkey pox virus transmission dynamics. Ife J. Sci. 21(1), 195–204 (2019)

    Article  Google Scholar 

  26. P. Emeka, M. Ounorah, F. Eguda, B. Babangida, Mathematical model for monkeypox virus transmission dynamics. Epidemiol. Open Access 8(3), 1000348 (2018)

    Google Scholar 

  27. R.E. TeWinkel, Stability analysis for the equilibria of a monkeypox model, Thesis and Dissertations, University of Wisconsin. https://dc.uwm.edu/etd/2132/

  28. S. Usman, I.I. Adamu et al., Modeling the transmission dynamics of the monkeypox virus infection with treatment and vaccination interventions. J. Appl. Math. Phys. 5(12), 2335 (2017)

    Article  Google Scholar 

  29. C. Bhunu, S. Mushayabasa, Modelling the transmission dynamics of pox-like infections. IAENG Int. J. 41(2), 1–9 (2011)

    MathSciNet  MATH  Google Scholar 

  30. O.J. Peter, F.A. Oguntolu, M.M. Ojo, A. Olayinka, R. Jan, I. Khan, Fractional order mathematical model of monkeypox transmission dynamics. Phys. Scr. (2022). https://doi.org/10.1088/1402-4896/ac7ebc

    Article  Google Scholar 

  31. O.J. Peter, S. Kumar, N. Kumari, F.A. Oguntolu, K. Oshinubi, R. Musa, Transmission dynamics of monkeypox virus: a mathematical modelling approach. Model. Earth Syst. Environ. 8, 3423–3434 (2022). https://doi.org/10.1007/s40808-021-01313-2

    Article  Google Scholar 

  32. A. Abidemi, Z.M. Zainuddin, N.A.B. Aziz, Impact of control interventions on COVID-19 population dynamics in Malaysia: a mathematical study. Eur. Phys. J. Plus 136(2), 1–35 (2021)

    Article  Google Scholar 

  33. H.W. Hethcote, The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. O.J. Peter, A.A. Ayoade, A.I. Abioye, A.A. Victor, C.E. Akpan, Sensitivity analysis of the parameters of a cholera model. J. Appl. Sci. Environ. Manag. 22(4), 477–481 (2018)

    Google Scholar 

  35. S.K. Biswas, S. Sarkar, U. Ghosh, The role of isolation and vector control in the prevention of dengue: a case study of 2014 dengue outbreak in Singapore. Int. J. Appl. Comput. Math. 7(6), 1–23 (2021)

    Article  MathSciNet  Google Scholar 

  36. S. Olaniyi, O.S. Obabiyi, Qualitative analysis of malaria dynamics with nonlinear incidence function. Appl. Math. Sci. 8(78), 3889–3904 (2014)

    Google Scholar 

  37. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1), 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. O.J. Peter, A.I. Abioye, F.A. Oguntolu, T.A. Owolabi, M.O. Ajisope, A.G. Zakari, T.G. Shaba, Modelling and optimal control analysis of lassa fever disease. Inform. Med. Unlocked 20, 100419 (2020)

    Article  Google Scholar 

  39. C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361–404 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. S.F. Abimbade, S. Olaniyi, O.A. Ajala, Recurrent malaria dynamics: insight from mathematical modelling. Eur. Phys. J. Plus 137(3), 1–16 (2022)

    Article  ADS  Google Scholar 

  41. A. Abidemi, N.A.B. Aziz, Analysis of deterministic models for dengue disease transmission dynamics with vaccination perspective in Johor, Malaysia. Int. J. Appl. Comput. Math. 8(1), 1–51 (2022)

    Article  MathSciNet  Google Scholar 

  42. H. Rwezaura, M.L. Diagne, A. Omame, A.L. de Espindola, J.M. Tchuenche, Mathematical modeling and optimal control of SARS-CoV-2 and tuberculosis co-infection: a case study of Indonesia. Model. Earth Syst. Environ. (2022). https://doi.org/10.1007/s40808-022-01430-6

    Article  Google Scholar 

  43. A. Abidemi, J. Ackora-Prah, H.O. Fatoyinbo, J.K.K. Asamoah, Lyapunov stability analysis and optimization measures for a dengue disease transmission model. Phys. A Stat. Mech. Appl. 602, 127646 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Abidemi, R. Ahmad, N.A.B. Aziz, Global stability and optimal control of dengue with two coexisting virus serotypes. MATEMATIKA Malays. J. Ind. Appl. Math. 35, 149–170 (2019)

    MathSciNet  Google Scholar 

  45. J.P. LaSalle, The Stability of Dynamical Systems (SIAM, Philadelphia PA, 1976)

    Book  MATH  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally, and approved the final draft of the manuscript.

Corresponding author

Correspondence to Olumuyiwa James Peter.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peter, O.J., Abidemi, A., Ojo, M.M. et al. Mathematical model and analysis of monkeypox with control strategies. Eur. Phys. J. Plus 138, 242 (2023). https://doi.org/10.1140/epjp/s13360-023-03865-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03865-x

Navigation