Skip to main content
Log in

Quantum coherence and coherence length of correlated Gaussian states

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The superposition principle is at the heart of quantum mechanical interference phenomena. For instance, Quantum coherence, developed by all systems that develop quantum correlations, is deeply rooted in the superposition principle. On the other hand, the coherence length in position and momentum has been shown to encode the interference extension over which phase space correlations are developed. In this work, using partially coherent correlated Gaussian states, we show how the quantum coherence measured by relative entropy can be related with the coherence length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

Notes

  1. Defined in terms of \(\hat{x}\) and \(\hat{p}\) through a rotation in the phase space by an angle \(\theta\), i.e., \(\hat{X}=\cos (\theta )\hat{x}+\sin (\theta )\hat{p}\) and \(\hat{P}=-\sin (\theta )\hat{x}+\cos (\theta )\hat{p}\)

References

  1. Z. Xi, Y. Li, Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  2. K.C. Tan, T. Volkoff, H. Kwon, H. Jeong, Phys. Rev. Lett. 119, 190405 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  3. L. Mandel, E. Wolf, Rev. Mod. Phys. 37, 231 (1965)

    Article  ADS  Google Scholar 

  4. M. Dagenais, L. Mandel, Investigation of two-time correlations in photon emissions from a single atom. Phys. Rev. A 18, 2217 (1978)

    Article  ADS  Google Scholar 

  5. P. Grangier, G. Roger, A. Aspect, A. Heidmann, S. Reynaud, Observation of photon antibunching in phase-matched multiatom resonance fluorescence. Phys. Rev. Lett. 57, 687 (1986)

    Article  ADS  Google Scholar 

  6. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995)

    Book  Google Scholar 

  7. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, Cambridge, 2007)

    MATH  Google Scholar 

  8. K. Ishikawa, Y. Tobita, Progress Theor. Phys. 122, 1111 (2009)

    Article  ADS  Google Scholar 

  9. S.M. Barnett, S. Franke-Arnold, A.S. Arnold, C. Baxter, J. Phys. B: At. Mol. Opt. Phys. 33, 4177 (2000)

    Article  ADS  Google Scholar 

  10. S. Franke-Arnold, G. Huyet, S.M. Barnett, J. Phys. B: At. Mol. Opt. Phys. 34, 945 (2001)

    Article  ADS  Google Scholar 

  11. H. Hora, Phys. Stat. Sol. 42, 131 (1970)

    Article  ADS  Google Scholar 

  12. I. Carusotto, M. Artoni, G.C. La Rocca, Phys. Rev. A 62, 063606 (2000)

    Article  ADS  Google Scholar 

  13. P. Liuzzo-Scorpo, A. Mari, V. Giovannetti, G. Adesso, Optimal continuous variable quantum teleportation with limited resources. Phys. Rev. Lett. 119, 120503 (2017)

    Article  ADS  Google Scholar 

  14. Y. Yuan, Z. Hou, J.-F. Tang, A. Streltsov, G.-Y. Xiang, C.-F. Li, G.-C. Guo, Direct estimation of quantum coherence by collective measurements. npj Quantum Inf. 6, 46 (2020)

    Article  ADS  Google Scholar 

  15. W. Ge, K. Jacobs, S. Asiri, M. Foss-Feig, M.S. Zubairy, Operational resource theory of nonclassicality via quantum metrology. Phys. Rev. Res. 2, 023400 (2020)

    Article  Google Scholar 

  16. F. Arute, K. Arya, R. Babbush et al., Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019)

    Article  ADS  Google Scholar 

  17. Z. Gedik, I.A. Silva, B. Ãakmak, G. Karpat, E.L.G. Vidoto, D.O. Soares-Pinto, E.R. de Azevedo, F.F. Fanchini, Computational speed-up with a single qudit. Sci. Rep. 5, 14671 (2015)

    Article  ADS  Google Scholar 

  18. K.E. Dorfman, D.V. Voronine, S. Mukamel, M.O. Scully, Photosynthetic reaction center as a quantum heat engine. PNAS 110, 2746 (2013)

    Article  ADS  Google Scholar 

  19. J. Klatzow, J.N. Becker, P.M. Ledingham, C. Weinzetl, K.T. Kaczmarek, D.J. Saunders, J. Nunn, I.A. Walmsley, R. Uzdin, E. Poem, Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122, 110601 (2019)

    Article  ADS  Google Scholar 

  20. J. Aasi, J. Abadie et al., Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. Nature Photon 7, 613 (2013)

    Article  ADS  Google Scholar 

  21. A. Bermudez, T. Schaetz, M.B. Plenio, Dissipation assisted quantum information processing with trapped ions. Phys. Rev. Lett. 110, 110502 (2013)

    Article  ADS  Google Scholar 

  22. Z. Lin, S. Su, J. Chen, J. Chen, J.F.G. Santos, Suppressing coherence effects in quantum-measurement-based engines. Phys. Rev. A 104, 062210 (2021)

    Article  ADS  Google Scholar 

  23. J. Sheng, C. Yang, H. Wu, Realization of a coupled-mode heat engine with cavity-mediated nanoresonators. Science 7, 50 (2021)

    Google Scholar 

  24. P.R. Dieguez, J.R. Guimarães, J.P.S. Peterson, R.M. Angelo, R.M. Serra, Experimental assessment of physical realism in a quantum-controlled device. Commun. Phys. 5, 82 (2022)

    Article  Google Scholar 

  25. J.P.S. Peterson, T.B. Batalhão, M. Herrera, A.M. Souza, R.S. Sarthour, I.S. Oliveira, R.M. Serra, Experimental characterization of a spin quantum heat engine. Phys. Rev. Lett. 123, 240601 (2019)

    Article  ADS  Google Scholar 

  26. T.B. Batalhão et al., Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett. 113, 140601 (2014)

    Article  ADS  Google Scholar 

  27. K. Micadei, J.P.S. Peterson, A.M. Souza, R.S. Sarthour, I.S. Oliveira, G.T. Landi, T.B. Batalhão, R.M. Serra, E. Lutz, Reversing the direction of heat flow using quantum correlations. Nat. Commun. 10, 2456 (2019)

    Article  ADS  Google Scholar 

  28. C.A. Riofrío, D. Gross, S.T. Flammia, T. Monz, D. Nigg, R. Blatt, J. Eisert, Experimental quantum compressed sensing for a seven-qubit system. Nat. Commun. 8, 15305 (2017)

    Article  ADS  Google Scholar 

  29. G. Maslennikov, S. Ding, R. HablÃŒtzel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai, V. Scarani, D. Matsukevich, Nat Commun. 10, 202 (2019)

    Article  ADS  Google Scholar 

  30. W. Qiu, X. Cheng, A. Chen, Y. Lan, W. Nie, Controlling quantum coherence and entanglement in cavity magnomechanical systems. Phys. Rev. A 105, 063718 (2022)

    Article  ADS  Google Scholar 

  31. J.P. Santos, L.C. Celeri, G.T. Landi, M. Paternostro, The role of quantum coherence in non-equilibrium entropy production. npj Quantum Inf. 5, 23 (2019)

    Article  ADS  Google Scholar 

  32. J.F.G. Santos, C.H.S. Vieira, P.R. Dieguez, Negativity-Mutual Information conversion and coherence in two-coupled harmonic oscillators. Physica A 579, 125937 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. P.A. Camati, J.F.G. Santos, R.M. Serra, Coherence effects in the performance of the quantum Otto heat engine. Phys. Rev. A 99, 062103 (2019)

    Article  ADS  Google Scholar 

  34. R. Dann, R. Kosloff, Quantum signatures in the quantum Carnot cycle. New J. Phys. 22(1), 013055 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. J.F. Sousa, C.H.S. Vieira, J.F.G. Santos, I.G. da Paz, Coherence behavior of strongly coupled bosonic modes. Phys. Rev. A 106, 032401 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  36. D.Z. Rossatto, D.P. Pires, F.M. de Paula, O.P. de Sá Neto, Quantum coherence and speed limit in the mean-field Dicke model of superradiance. Phys. Rev. A 102, 053716 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  37. Y.-C. Li, H.-Q. Lin, Quantum coherence and quantum phase transitions. Sci. Rep. 6, 26365 (2016)

    Article  ADS  Google Scholar 

  38. R. Graham, Squeezing and frequency changes in harmonic oscillations. J. Modern Opt. 34, 873–879 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. K. Husimi, Miscellanea in elementary quantum mechanics II. Prog. Theor. Phys. 9, 381 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Nanoscale heat engine beyond the Carnot limit. Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  41. O. Abah, M. Paternostro, E. Lutz, Shortcut-to-adiabaticity quantum Otto refrigerator. Phys. Rev. Res. 2, 023120 (2020)

    Article  Google Scholar 

  42. F. Galve, E. Lutz, Nonequilibrium thermodynamic analysis of squeezing Fernando. Phys. Rev. A 79, 055804 (2009)

    Article  ADS  Google Scholar 

  43. M. Xin, W.S. Leong, Z. Chen, Y. Wang, S.-Y. Lan, Rapid quantum squeezing by jumping the harmonic oscillator frequency. Phys. Rev. Lett. 127, 183602 (2021)

    Article  ADS  Google Scholar 

  44. H. Kang, D. Han, N. Wang, Y. Liu, S. Hao, X. Su, Experimental demonstration of robustness of Gaussian quantum coherence. Photon. Res. 9, 1330 (2021)

    Article  Google Scholar 

  45. U. Singh, M. N. Bera, A. Misra, A. K. Pati, Erasing Quantum Coherence: An Operational Approach. arXiv:1506.08186

  46. B. Mohan, S. Das, A.K. Pati, Quantum speed limits for information and coherence. New J. Phys. 24, 065003 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  47. V.V. Dodonov, Nonclassical states in quantum optics: a squeezed review of the first 75 years. J. Opt. B 4, R1 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  48. V.V. Dodonov, E.V. Kurmyshiev, V.I. Man’ko, Generalized uncertainty relation and correlated coherent states. Phys. Lett. 79A, 150 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  49. H.P. Yuen, Contractive states and the standard quantum limit for monitoring free-mass positions. Phys. Rev. Lett. 51, 719 (1983)

    Article  ADS  Google Scholar 

  50. L.S. Marinho, I.G. da Paz, M. Sampaio, Squeezing and slowed quantum decoherence in the double-slit experiment. Phys. Rev. A 101, 062109 (2020)

    Article  ADS  Google Scholar 

  51. A. Viale, M. Vicari, N. Zanghi, Analysis of the loss of coherence in interferometer with macromolecules. Phys. Rev. A 68, 063610 (2003)

    Article  ADS  Google Scholar 

  52. T. Baumgratz, M. Cramer, M.B. Plenio, Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  53. J. Xu, Quantifying coherence of Gaussian states. Phys. Ref. A 93, 032111 (2016)

    Article  ADS  Google Scholar 

  54. D. Giulini, E. Joos, C. Kiefer, J. Xupsch, I.O. Stamatescu, H.D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Berlin, 1996)

    Book  MATH  Google Scholar 

  55. M. Baron, H. Rauch, Coherence and decoherence in neutron optics. AIP Conf. Proc. 1327, 89 (2011)

    Article  ADS  Google Scholar 

  56. A.G. Klein, S.A. Werner, Rep. Prog. Phys. 46, 259 (1983)

    Article  ADS  Google Scholar 

  57. M.L. Calvo, R.F. Ãlvarez-Estrada, Advances in Neutron Optics: Fundamentals and Applications in Materials Science and Biomedicine (Taylor & Francis Group, New York, 2020)

    Google Scholar 

  58. J. Shen et al., Unveiling contextual realities by microscopically entangling a neutron. Nat. Commun. 11, 930 (2020)

    Article  ADS  Google Scholar 

  59. S.J. Kuhn et al., Phys. Rev. Res. 3, 023227 (2021)

    Article  Google Scholar 

  60. M. Santarsiero, F. Gori, R. Borghi, G. Cincotti, P. Vahimaa, Spreading properties of beams radiated by partially coherent Schell-model sources. J. Opt. Soc. Am. A 16, 106 (1999)

    Article  ADS  Google Scholar 

  61. A. Bhattacharjee, R. Sahu, A.K. Jha, Generation of a Gaussian Schell-model field as a mixture of its coherent modes. J. Opt. 21, 105601 (2019)

    Article  ADS  Google Scholar 

  62. Z. Mei, Y. Mao, Y. Wang, Electromagnetic multi-Gaussian Schell-model vortex light sources and their radiation field properties. Opt. Express 26, 21992 (2018)

    Article  ADS  Google Scholar 

  63. Y. Liu, X. Liu, L. Liu, F. Wang, Y. Zhang, Y. Cai, Ghost imaging with a partially coherent beam carrying twist phase in a turbulent ocean: a numerical approach. Appl. Sci. 9, 15 (2019)

    ADS  Google Scholar 

  64. M. Zhou, W. Fan, G. Wu, Evolution properties of the orbital angular momentum spectrum of twisted Gaussian Schell-model beams in turbulent atmosphere. J. Opt. Soc. Am. A 37, 142 (2020)

    Article  ADS  Google Scholar 

  65. L. Hutter, E.S. Gomez, G. Lima, S.P. Walborn, Partially coherent spontaneous parametric downconversion: Twisted Gaussian biphotons. AVS Quantum Sci. 3, 031401 (2021)

    Article  ADS  Google Scholar 

  66. G.H. dos Santos, A.G. de Oliveira, N.R. da Silva, G. Canas, E.S. Gomez, S. Joshi, Y. Ismail, P.H.S. Ribeiro, S.P. Walborn, Phase conjugation of twisted Gaussian Schell model beams in stimulated down-conversion. Nanophotonics 11, 763 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

P.P.S thanks PROPESQ (PPGF/UFPI/PI). C.H.S.V. acknowledges CAPES (Brazil) and Federal University of ABC for the financial support. M.S thanks CNPq for a research grant 302790/2020-9. J. F. G. Santos acknowledges São Paulo Research Grant No. 2019/04184-5, NSFC (China) under Grant No. 12050410258, and Federal University of ABC for the support. I.G.P. acknowledges Grant No. 307942/2019-8 from CNPq. MS acknowledges a research grant 302790/2020-9 from CNPq.

Funding

The funding was provided by National Natural Science Foundation of China (Grant No. 12050410258) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (Grant No. 302790/2020-9 and 307942/2019-8)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas F. G. Santos.

Appendix A: Parameters of the density matrices and second moments

Appendix A: Parameters of the density matrices and second moments

The parameters of the density matrix in position and in momentum are given by

$$\begin{aligned} A_{1} & = {} \frac{m^{2}}{8\hbar ^{2}t^{2}\sigma _{0}^{2}B^{2}},\;\;A_{2}=\frac{m^{2}}{8\hbar ^{2}t^{2}\ell _{0}^{2}B^{2}},\end{aligned}$$
(22)
$$\begin{aligned} A_{3} & = {} \frac{m}{4 \hbar t\sigma _{0}^{2}B^{2}}\left( \frac{1}{2\sigma _{0}^{2}}+\frac{1}{\ell _{0}^{2}}\right) \nonumber \\{} &\quad {} +\frac{m\gamma }{8\hbar t \sigma _{0}^{2}B^{2}}\left( \frac{m}{\hbar t}+\frac{\gamma }{\sigma _{0}^{2}}\right) ,\end{aligned}$$
(23)
$$\begin{aligned} B^{2} & = {} \frac{1}{4\sigma _{0}^{4}}+\frac{1}{2\sigma _{0}^{2}\ell _{0}^{2}}+\left( \frac{m}{2\hbar t}+\frac{\gamma }{2\sigma _{0}^{2}}\right) ^{2},\end{aligned}$$
(24)
$$\begin{aligned} C_1 & = {} \frac{A_1}{4\hbar ^{2}(A_{1}^{2}+2A_1A_2+A_{3}^{2})},C_2=\frac{A_2}{A_{1}}C_1, \end{aligned}$$
(25)

and

$$\begin{aligned} C_3=\frac{A_3}{A_{1}}C_1. \end{aligned}$$
(26)

The dimensionless second moments are defined by

$$\begin{aligned} \sigma _{11}= & {} \frac{\langle \hat{x}^{2}\rangle }{\sigma _{0}^{2}}=\frac{1}{\sigma _{0}^{2}}Tr[\rho (x,x^{\prime },t)\hat{x}^{2}],\end{aligned}$$
(27)
$$\begin{aligned} \sigma _{22}= & {} \frac{\sigma _{0}^{2}}{\hbar ^{2}} \langle \hat{p}^{2}\rangle =\frac{\sigma _{0}^{2}}{\hbar ^{2}}Tr[\rho (p,p^{\prime },t)\hat{p}^{2}], \end{aligned}$$
(28)

and

$$\begin{aligned} \sigma _{12}=\frac{1}{2\hbar } \langle (\hat{x}\hat{p}+\hat{p}\hat{x})\rangle =\frac{1}{2\hbar }Tr[\rho (x,x^{\prime },t)(\hat{x}\hat{p}+\hat{p}\hat{x})]. \end{aligned}$$
(29)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, P.P.d., Vieira, C.H.S., Sampaio, M. et al. Quantum coherence and coherence length of correlated Gaussian states. Eur. Phys. J. Plus 138, 210 (2023). https://doi.org/10.1140/epjp/s13360-023-03836-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03836-2

Navigation