Skip to main content
Log in

Energy levels of the improved Tietz oscillator in external magnetic and Aharonov-Bohm flux fields: the Pekeris approximation recipe

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, the radial Schrödinger equation is solved with the improved Tietz oscillator in the presence of an external magnetic and Aharonov-Bohm (AB) flux fields. By employing the proper quantization rule, analytical equation for bound state energy levels was derived within the framework of Pekeris-type approximation scheme. The expression for the energy levels was used to generate numerical data for some diatomic substances including HF (X 1Σ+), HCl (X 1Σ+), HI (X 1Σ+), CO (X 1Σ+), MgH (X 2Σ+), ICl (A 3Π1), K2 (a 3Σu+), 7Li2 (a 3Σu+), BrF (X 1Σ+) and BCl (X 1Σ+) molecules. In the absence of the external fields, the mean absolute deviation of the energy levels from experimental data of the molecules are 3.3494%, 2.9210%, 2.8613%, 0.3985%, 4.0886%, 0,9203%, 1.7691%, 0.4850%, 1.0628%, and 0.9010%. The study further reveal that in the absence of the external fields, the obtained energy levels are degenerate. However, if the fields are maintained at about 10 μT, the resulting energy of the molecules is nondegenerate. The results obtained are in good agreement with available literature on diatomic systems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

Data sharing not applicable.

References

  1. Z.Z. Alisultanov, R.P. Meilanov, L.S. Paixão, M.S. Reis, Phys. E: Low-Dimens. Syst. Nanostructures 65, 44 (2015). https://doi.org/10.1016/j.physe.2014.08.012

    Article  ADS  Google Scholar 

  2. D. Bejan, Phys. Lett. A 381, 3307 (2017). https://doi.org/10.1016/j.physleta.2017.08.024

    Article  ADS  Google Scholar 

  3. B.Q. Wang, Z.W. Long, C.Y. Long, S.R. Wu, Phys. A: Stat. Mech. Appl. 517, 163 (2019). https://doi.org/10.1016/j.physa.2018.10.041

    Article  Google Scholar 

  4. C.O. Edet, R. Khordad, E.B. Ettah, S.A. Aljunid, R. Endut, N. Ali, M. Asjad, P.O. Ushie, A.N. Ikot, Sci. Rep. 12, 15430 (2022). https://doi.org/10.1038/s41598-022-19396-x

    Article  ADS  Google Scholar 

  5. C.S. Jia, R. Zheng, X.L. Peng, L.H. Zhang, Y.L. ZhaO, Chem. Eng. Sci. 190, 1 (2018). https://doi.org/10.1016/j.ces.2018.06.009

    Article  Google Scholar 

  6. M. Goudarzi, J. Karamdel, H. Hassanabadi, Sh. Zorriasatein Solid State Commun. 344, 114669 (2022). https://doi.org/10.1016/j.ssc.2022.114669

    Article  Google Scholar 

  7. R.A. El-Nabulsi, Few-Body Syst. 61, 37 (2020). https://doi.org/10.1007/s00601-020-01569-x

    Article  ADS  Google Scholar 

  8. L. Dantas, C. Furtado, A.L.S. Netto, Phys. Lett. A 379, 11 (2015). https://doi.org/10.1016/j.physleta.2014.10.016

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Solaimani, G.H. Sun, S.H. Dong, Chin. Phys. B 27, 040301 (2018). https://doi.org/10.1088/1674-1056/27/4/040301

    Article  ADS  Google Scholar 

  10. M. Eshghi, H. Mehraban, S.M. Ikhdair, Pramana. J. Phys. 88, 73 (2017). https://doi.org/10.1007/s12043-017-1375-2

    Article  Google Scholar 

  11. L. Máthé, C.P. Onyenegecha, A.-A. Farcaş, L.-M. Pioraş-Ţimbolmaş, M. Solaimani, H. Hassanabadi, Phys. Lett. A 397, 127262 (2021). https://doi.org/10.1016/j.physleta.2021.127262

    Article  Google Scholar 

  12. B. Boyacioglu, A. Chatterjee, Phys. E 44, 1826 (2012). https://doi.org/10.1016/j.physe.2012.05.001

    Article  Google Scholar 

  13. Y. Khoshbakht, R. Khordad, H.R. Rastegar Sedehi, J. Low Temp. Phys. 202, 59 (2021). https://doi.org/10.1007/s10909-020-02522-2

    Article  ADS  Google Scholar 

  14. G.H. Sun, S.H. Dong, K.D. Launey, T. Dytrych, J.P. Draayer, Int. J. Quantum Chem. 115, 891 (2015). https://doi.org/10.1002/qua.24928

    Article  Google Scholar 

  15. H.R. Rastegar Sedehi, R. Khordad, Phys. E 134, 114886 (2021). https://doi.org/10.1016/j.physe.2021.114886

    Article  Google Scholar 

  16. M. Eshghi, R. Sever, S.M. Ikhdair, Eur. Phys. J. Plus 134, 155 (2019). https://doi.org/10.1140/epjp/i2019-12634-x

    Article  Google Scholar 

  17. M. Eshghi, H. Mehraban, M. Ghafoori, Math. Meth. Appl. Sci. 40, 1003 (2017). https://doi.org/10.1002/mma.4032

    Article  Google Scholar 

  18. A.F. Nikiforov, V.B. Uvarov VB., Special Functions of Mathematical Physics (Birkhauser, Basel, 1988). https://doi.org/10.1007/978-1-4757-1595-8

    Book  Google Scholar 

  19. C. Tezcan, R. Sever, Int. J. Theor. Phys. 48, 337 (2009). https://doi.org/10.1007/s10773-008-9806-y

    Article  Google Scholar 

  20. S.A. Moghadam, H. Mehraban, M. Eshghi, Chin. Phys. B 22, 100305 (2013). https://doi.org/10.1088/1674-1056/22/10/100305

    Article  Google Scholar 

  21. R. Horchani, H. Al-Aamri, S. Al-Kindi, A.N. Ikot, U.S. Okorie, G.J. Rampho, H. Jelassi, Eur. Phys. J. D 75, 36 (2021). https://doi.org/10.1140/epjd/s10053-021-00038-2

    Article  ADS  Google Scholar 

  22. Z.Q. Ma, B.W. Xu, EPL 69, 685 (2005). https://doi.org/10.1209/epl/i2004-10418-8

    Article  ADS  Google Scholar 

  23. F.A. Serrano, X.Y. Gu, S.H. Dong, J. Math. Phys. 51, 082103 (2010). https://doi.org/10.1063/1.3466802

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Sever, C. Tezcan, Phys. Rev. A 36, 1045 (1987). https://doi.org/10.1103/PhysRevA.36.1045

    Article  ADS  Google Scholar 

  25. A.N. Ikot, C.O. Edet, P.O. Amadi, U.S. Okorie, G.J. Rampho, H.Y. Abdullah, Eur. Phys. J. D 74, 159 (2020). https://doi.org/10.1140/epjd/e2020-10084-9

    Article  ADS  Google Scholar 

  26. G.J. Rampho, A.N. Ikot, C.O. Edet, U.S. Okorie, Mol. Phys. 110, e1821922 (2020). https://doi.org/10.1080/00268976.2020.1821922

    Article  Google Scholar 

  27. E.S. William, I.B. Okon, O.O. Ekerenam, I.O. Akpan, B.I. Ita, E.P. Inyang, I.P. Etim, I.F. Umoh, Int. J. Quantum Chem. 122, e26925 (2022). https://doi.org/10.1002/qua.26925

    Article  Google Scholar 

  28. S.M. Ikhdair, B.J. Falaye, M. Hamzavi, Ann. Phys. 353, 282 (2015). https://doi.org/10.1016/j.aop.2014.11.017

    Article  ADS  Google Scholar 

  29. E. Omugbe, O.E. Osafile, I.B. Okon, U.S. Okorie, K.O. Suleman, I.J. Njoku, A. Jahanshir, C.A. Onate, Eur. Phys. J. D 76, 177 (2022). https://doi.org/10.1140/epjd/s10053-022-00507-2

    Article  ADS  Google Scholar 

  30. O. Mustafa, Z. Algadhi, Chin. J. Phys. 65, 554 (2020). https://doi.org/10.1016/j.cjph.2020.03.027

    Article  Google Scholar 

  31. M. Eshghi, H. Mehraban, Eur. Phys. J. Plus 132, 121 (2017). https://doi.org/10.1140/epjp/i2017-11379-x

    Article  Google Scholar 

  32. S. Faniandari, A. Suparmi, C. Cari, Mol. Phys. 120, e2083712 (2022). https://doi.org/10.1080/00268976.2022.2083712

    Article  ADS  Google Scholar 

  33. M. Eshghi, H. Mehraban, S.M. Ikhdair, Chin. Phys. B 26, 060302 (2017). https://doi.org/10.1088/1674-1056/26/6/060302

    Article  ADS  Google Scholar 

  34. O. Mustafa, Z. Algadhi, Eur. Phys. J. Plus 135, 559 (2020). https://doi.org/10.1140/epjp/s13360-020-00529-y

    Article  Google Scholar 

  35. M. Eshghi, H. Mehraban, S.M. Ikhdair, Eur. Phys. J. A 52, 201 (2016). https://doi.org/10.1140/epja/i2016-16201-4

    Article  ADS  Google Scholar 

  36. M. Eshghi, R. Sever, S.M. Ikhdair, Chin. Phys. B 27, 020301 (2018). https://doi.org/10.1088/1674-1056/27/2/020301

    Article  ADS  Google Scholar 

  37. C.S. Jia, Y.F. Diao, X.J. Liu, P.Q. Wang, J.Y. Liu, G.D. Zhang, J. Chem. Phys. 137, 014101 (2012). https://doi.org/10.1063/1.4731340

    Article  ADS  Google Scholar 

  38. H.M. Tang, G.C. Liang, L.H. Zhang, F. Zhao, C.S. Jia, Can. J. Phys. 92, 201 (2014). https://doi.org/10.1139/cjc-2013-0466

    Article  Google Scholar 

  39. J.Y. Liu, J.F. Du, C.S. Jia, Eur. Phys. J. Plus 128, 139 (2013). https://doi.org/10.1140/epjp/i2013-13139-4

    Article  Google Scholar 

  40. H.B. Liu, L.Z. Yi, C.S. Jia, J. Math. Chem. 56, 2982 (2018). https://doi.org/10.1007/s10910-018-0927-0

    Article  MathSciNet  Google Scholar 

  41. C.S. Jia, C.W. Wang, L.H. Zhang, X.L. Peng, H.M. Tang, J.Y. Liu, Y. Xiong, R. Zeng, Chem. Phys. Lett. 692, 57 (2018). https://doi.org/10.1016/j.cplett.2017.12.013

    Article  ADS  Google Scholar 

  42. R. Jiang, C.S. Jia, Q. Wang, X.L. Peng, L.H. Zhang, Chem. Phys. Lett. 715, 186 (2019). https://doi.org/10.1016/j.cplett.2018.11.044

    Article  ADS  Google Scholar 

  43. J. Wang, C.S. Jia, C.J. Li, X.L. Peng, L.H. Zhang, J.Y. Liu, ACS Omega 4, 19193 (2019). https://doi.org/10.1021/acsomega.9b02488

    Article  Google Scholar 

  44. C.S. Jia, J. Li, Y.S. Liu, X.L. Peng, X. Jia, L.H. Zhang, R. Jiang, X.P. Li, J.Y. Liu, Y.L. Zhao, J. Mol. Liq. 315, 113751 (2020). https://doi.org/10.1016/j.molliq.2020.113751

    Article  Google Scholar 

  45. C.W. Wang, J. Wang, Y.S. Liu, J. Li, X.L. Peng, C.S. Jia, L.H. Zhang, L.Z. Yi, J.Y. Liu, C.J. Li, X. Jia, J. Mol. Liq. 321, 114912 (2021). https://doi.org/10.1016/j.molliq.2020.114912

    Article  Google Scholar 

  46. D.C. Liang, R. Zeng, C.W. Wang, Q.C. Ding, L.S. Wei, X.L. Peng, J.Y. Liu, J. Yu, C.S. Jia, J. Mol. Liq. 352, 118722 (2022). https://doi.org/10.1016/j.molliq.2022.118722

    Article  Google Scholar 

  47. Q.C. Ding, C.S. Jia, J.Z. Liu, J. Li, R.F. Du, J.Y. Liu, X.L. Peng, C.W. Wang, H.X. Tang, Chem. Phys. Lett. 803, 139844 (2022). https://doi.org/10.1016/j.cplett.2022.139844

    Article  Google Scholar 

  48. E.S. Eyube, P.P. Notani, D. Yabwa, E. Omugbe, C.A. Onate, I.B. Okon, G.G. Nyam, Y.Y. Jabil, M.M. Izam, Int. J. Quantum Chem. 123(5), e27040 (2022). https://doi.org/10.1002/qua.27040

    Article  Google Scholar 

  49. K.X. Fu, M. Wang, C.S. Jia, Commun. Theor. Phys. 71, 103 (2019). https://doi.org/10.1088/0253-6102/71/1/103

    Article  ADS  Google Scholar 

  50. J.P. Araujo, M.Y. Ballester, Int. J. Quantum Chem. 121, e26808 (2021). https://doi.org/10.1002/qua.26808

    Article  Google Scholar 

  51. C.W. Wang, X.L. Peng, J.Y. Liu, R. Jiang, X.P. Li, Y.S. Liu, S.Y. Liu, L.S. Wei, L.H. Zhang, C.S. Jia, Int. J. Hydrog. Energy 47, 27821 (2022). https://doi.org/10.1016/j.ijhydene.2022.06.105

    Article  Google Scholar 

  52. Q.C. Ding, C.S. Jia, C.W. Wang, X.L. Peng, J.Y. Liu, L.H. Zhang, R. Jiang, S.Y. Zhu, H. Yuan, H.X. Tang, J. Mol. Liq. 371, 121088 (2023). https://doi.org/10.1016/j.molliq.2022.121088

    Article  Google Scholar 

  53. G. Stephenson, Mathematical Methods for Science Students, 2nd edn. (Dover Publications, New York, 2020)

    Google Scholar 

  54. E.N. Bogachek, U. Landman, Phys. Rev. B 52, 14067 (1995). https://doi.org/10.1103/PhysRevB.52.14067

    Article  ADS  Google Scholar 

  55. I.B. Okon, C.A. Onate, E. Omugbe, U.S. Okorie, C.O. Edet, A.D. Anita, J.P. Araujo, C.N. Isonguyo, M.C. Onyeaju, E.S. William, R. Horchani, A.N. Ikot, Mol. Phys. 120, e2046295 (2022). https://doi.org/10.1080/00268976.2022.2046295

    Article  ADS  Google Scholar 

  56. O. Mustafa, Phys. Scr. 90 (2015) 065002. https://doi.org/10.1088/0031-8949/90/6/065002

  57. H. Yanar, A. Taş, M. Salti, O. Aydogdu, Eur. Phys. J. Plus 135, 292 (2020). https://doi.org/10.1140/epjp/s13360-020-00297-9

    Article  Google Scholar 

  58. B.J. Falaye, S.M. Ikhdair, M. Hamzavi, J. Theor. Appl. Phys. 9, 151 (2015). https://doi.org/10.1007/s40094-015-0173-9

    Article  ADS  Google Scholar 

  59. P.G. Hajigeorgiou, J. Mol. Spectrosc. 263, 101 (2010). https://doi.org/10.1016/j.jms.2010.07.003

    Article  ADS  Google Scholar 

  60. Z. Xiao-Niu, S. De-Heng, Z. Zun-Lue, S. Jin-Feng, Chin. Phys. B 19, 123501 (2010). https://doi.org/10.1088/1674-1056/19/12/123501

    Article  ADS  Google Scholar 

  61. A. Shayester, R.D.E. Henderson, R.J.L. Roy, P.F. Bernath, J. Phys. Chem. A 111, 12495 (2007). https://doi.org/10.1021/jp075704a

    Article  Google Scholar 

  62. J.A. Coxon, M.A. Wickramaaratchi, J. Mol. Spectrosc. 79, 380 (1980). https://doi.org/10.1016/0022-2852(80)90220-9

    Article  ADS  Google Scholar 

  63. L. Li, A.M. Lyyra, W.T. Luh, W.C. Stwalley, J. Chem. Phys. 93, 8452 (1990). https://doi.org/10.1063/1.459283

    Article  ADS  Google Scholar 

  64. C. Linton, F. Martin, A.J. Ross, I. Russier, P. Crozet, A. Yiannopoulou, L. Li, A.M. Lyyra, J. Mol. Spectrosc. 196, 20 (1999). https://doi.org/10.1006/jmsp.1999.7858

    Article  ADS  Google Scholar 

  65. J.Y. Liu, G.D. Zhang, C.S. Jia, Phys. Lett. A 377, 1444 (2013). https://doi.org/10.1016/j.physleta.2013.04.019

    Article  ADS  MathSciNet  Google Scholar 

  66. H. Bürger, E. Jacob, M. Fähnle, Z. Naturforsch. 41a, 1015 (1986). https://doi.org/10.1515/zna-1986-0806

    Article  ADS  Google Scholar 

  67. D.H. Shi, H. Liu, X.N. Zhang, J.F. Sun, Y.F. Liu, Z.L. Zhu, Int. J. Quantum Chem. 111, 2825 (2010). https://doi.org/10.1002/qua.22699

    Article  Google Scholar 

  68. Q.C. Fan, J. Jian, Z.X. Fan, J. Fu, H.D. Li, J. Ma, F. Xie, Spectrochim. Acta A Mol. Biomol. Spectrosc. 267, 120564 (2022). https://doi.org/10.1016/j.saa.2021.120564

    Article  Google Scholar 

  69. J.A. Coxon, P.G. Hajigeorgiou, J. Quant. Spectrosc. Radiat. Transf. 151, 133 (2015). https://doi.org/10.1016/j.jqsrt.2014.08.028

    Article  ADS  Google Scholar 

  70. S.M. Kirschner, J.K.G. Watson, J. Mol. Spectrosc. 51, 321 (1974). https://doi.org/10.1016/0022-2852(74)90060-5

    Article  ADS  Google Scholar 

  71. M.A.A. Clyne, A.H. Curran, J.A. Coxon, J. Mol. Spectrosc. 63, 43 (1976). https://doi.org/10.1016/0022-2852(67)90133-6

    Article  ADS  Google Scholar 

  72. E.S. Eyube, P.P. Notani, M.M. Izam, Mol. Phys. 120, e1979265 (2022). https://doi.org/10.1080/00268976.2021.1979265

    Article  ADS  Google Scholar 

  73. E.S. Eyube, Mol. Phys. 120, e2037774 (2022). https://doi.org/10.1080/00268976.2022.2037774

    Article  ADS  Google Scholar 

  74. E.S. Eyube, P.P. Notani, A.B. Dikko, Eur. Phys. J. Plus 137, 329 (2022). https://doi.org/10.1140/epjp/s13360-022-02526-9

    Article  Google Scholar 

  75. R. Horchani, H. Jelassi, A.N. Ikot, U.S. Okorie, Int. J. Quantum Chem. 121, e26558 (2021). https://doi.org/10.1002/qua.26558

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ESE: Conceptualization, Data curation, Writing—Original draft, Writing—Review and editing, Methodology, Project administration, Validation. HS: Writing—Original draft, Writing—Review and editing, Validation, Data curation. IBO: Writing—Original draft, Writing—Review and editing, Validation, Data curation. PUT: Writing—Original draft, Writing—Review and editing, Validation, Data curation. CAO: Supervision, Writing—Original draft, Writing—Review and editing, Methodology. DD: Writing—Original draft, Writing—Review and editing, Methodology. PPN: Writing—Original draft, Writing—Review and editing, Methodology. EO: Writing—Original draft, Writing—Review and editing, Methodology.

Corresponding author

Correspondence to E. S. Eyube.

Ethics declarations

Conflict of interest

We have no known competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Appendices

Appendix A

Pekeris approximation models for the functions F/r and 1/r 2

In this section, approximate expressions are derived for the functions F/r and 1/r2 in terms of component functions of the ITO. Firstly, we note that the ITO can be expressed as \({\text{U}}\left( r \right) = D_{{\text{e}}} - 2D_{{\text{e}}} b{\text{F}}\left( r \right) + D_{{\text{e}}} b^{2} {\text{G}}\left( r \right),\) where \({\text{F}}\left( r \right) = \left( {{\text{e}}^{\alpha r} + q} \right)^{ - 1}\) and G (r) = F2 (r). The main target here is to express F/r, and 1/r2 in similar identical functional form with the potential U(r). The functions F(r) and G(r) can be expanded in Taylor series about the point rre, or equivalently, about x = 0, where x = r/re 1, leading to

$$\text{F}\left( x \right) = \frac{Q}{{\text{e}^{{ax}} + qQ}} \approx \text{F}_{0} + \text{F}^{\prime } _{0} x + \tfrac{1}{2}\text{F}^{{\prime \prime }} _{0} x^{2} + Ox^{3} ,$$
(38)
$$\text{G}\left( x \right) = \frac{{Q^{2} }}{{\left( {\text{e}^{{ax}} + qQ} \right)^{2} }} \approx \text{G}_{0} + \text{G}^{\prime } _{0} x + \tfrac{1}{2}\text{G}^{{\prime \prime }} _{0} x^{2} + Ox^{3} ,$$
(39)

where a = αre, Q = e−a, prime denotes derivative with respect to x, \(\text{F}_{0} = \text{F}\left( 0 \right),\;\text{F}^{\prime}_{0} = \text{F}^{\prime}\left( 0 \right),\;\text{F}^{\prime\prime}_{0} = \text{F}^{\prime\prime}\left( 0 \right)\). Similarly \(\text{G}_{0} = \text{G}\left( 0 \right),\;\text{G}^{\prime}_{0} = \text{G}^{\prime}\left( 0 \right),\;\text{G}^{\prime\prime}_{0} = \text{G}^{\prime\prime}\left( 0 \right)\). Using the above equations, we obtained

$$\text{F}_{0} = \frac{Q}{{1 + qQ}}\;\text{F}^{\prime } _{0} = - \frac{{a\text{F}_{0} }}{{1 + qQ}}\;\text{F}^{{\prime \prime }} _{0} = \frac{{a^{2} \left( {1 - qQ} \right)\text{F}_{0} }}{{\left( {1 + qQ} \right)^{2} }}$$
(40)
$$\text{G}_{0} = \frac{{Q^{2} }}{{\left( {1 + qQ} \right)^{2} }}\;\text{G}^{\prime } _{0} = - \frac{{2aG_{0} }}{{1 + qQ}}\;\text{G}^{{\prime \prime }} _{0} = \frac{{2a^{2} \left( {2 - qQ} \right)\text{G}_{0} }}{{\left( {1 + qQ} \right)^{2} }}$$
(41)

Next, we consider an arbitrary function H(x) with the property that

$${\text{H}}\left( x \right) \, = {\text{ X }} + {\text{ YF}}\left( x \right) \, + {\text{ ZG}}\left( x \right),$$
(42)

where (X; Y; Z) ≡ (a0, b0, c0, …; a1, b1, c1, …; a2, b2, c2, …). The function H(x) expanded in Taylor series about x = 0 gives

$$\text{H}\left( x \right) \approx \text{H}_{0} + \text{H}^{\prime } _{0} x + \tfrac{1}{2}\text{H}^{{\prime \prime }} _{0} x^{2} + Ox^{3}$$
(43)

By inserting equations (38), (39) and (43) into (A5) and equating corresponding coefficients of X, Y, and Z, one obtains the following set of relations

$$\text{X} + \text{F}_{0} \text{Y} + \text{G}_{0} \text{Z} = \text{H}_{0} ,$$
(44)
$$\text F^{\prime } _{0} \text Y + \text G^{\prime } _{0} \text Z = \text H^{\prime } _{0} ,$$
(45)
$$\text{F}^{{\prime \prime }} _{0} \text{Y} + \text{G}^{{\prime \prime }} _{0} \text{Z} = \text{H}^{{\prime \prime }} _{0} .$$
(46)

Solving equations (44)–(A9) yields

$$\text{X} = \text{H}_{0} + \frac{{\text{H}^{\prime } _{0} }}{{2a}}\left( {3 - q} \right)\left( {1 + qQ} \right) + \frac{{\text{H}^{{\prime \prime }} _{0} }}{{2a^{2} }}\left( {1 + qQ} \right)^{2}$$
(47)
$$\text{Y} = - \frac{{\text{H}^{\prime } _{0} }}{{aQ}}\left( {2 - q} \right)\left( {1 + qQ} \right)^{2} - \frac{{\text{H}^{{\prime \prime }} _{0} }}{{a^{2} Q}}\left( {1 + qQ} \right)^{3} ,$$
(48)
$$\text{Z} = \frac{{\text{H}^{\prime } _{0} }}{{aQ^{2} }}\left( {1 - q} \right)\left( {1 + qQ} \right)^{2} + \frac{{\text{H}^{{\prime \prime }} _{0} }}{{a^{2} Q^{2} }}\left( {1 + qQ} \right)^{4}$$
(49)

The coefficients (X, Y, Z) ≡ (a0, a1, a2) in Eq. (17) can be obtained by letting H(r) = F/r, thus, in terms of parameter x, we have

$$\text{H}\left( x \right) = \frac{{\text{F}\left( r \right)}}{r} \equiv \frac{Q}{{r_{\text{e}} \left( {1 + x} \right)\left( {\text{e}^{{ax}} + qQ} \right)}}$$
(50)

Equation (50), and its first-two derivatives at x = 0 gives

$$\text{H}_{0} = \frac{Q}{{r_{\text{e}} \left( {1 + qQ} \right)}}\;\text{H}^{\prime } _{0} = - \left( {1 + \frac{a}{{1 + qQ}}} \right)\text{H}_{0} \;\text{H}^{{\prime \prime }} _{0} = - \left\{ {2 + \frac{{2a}}{{1 + qQ}} + \frac{{a^{2} \left( {1 - qQ} \right)}}{{\left( {1 + qQ} \right)^{2} }}} \right\}\text{H}_{0}$$
(51)

Substituting (A14) into (A10)–(A12) gives

$$a_{0} = - \frac{Q}{{2r_{{\text{e}}} }}\left\{ {\frac{{2 - q\left( {1 + Q} \right)}}{1 + qQ} + \frac{5 - q}{a} + \frac{{2\left( {1 + qQ} \right)}}{{a^{2} }}} \right\},$$
(52)
$$a_{1} = - \frac{1}{{r_{{\text{e}}} }}\left\{ {3 - q\left( {1 + Q} \right) + \frac{1}{a}\left( {4 - q} \right)\left( {1 + qQ} \right) + \frac{2}{{a^{2} }}\left( {1 + qQ} \right)^{2} } \right\},$$
(53)
$$a_{2} = \frac{1}{{Qr_{{\text{e}}} }}\left\{ {2 - q\left( {1 + qQ^{2} } \right) + \frac{1}{a}\left( {3 - q + 2qQ} \right)\left( {1 + qQ} \right) + \frac{2}{{a^{2} }}\left( {1 + qQ} \right)^{3} } \right\}.$$
(54)

To obtain the coefficients (X, Y, Z) ≡ (b0, b1, b2) in (18), we let H(r) = 1/r2, r = re (1 + x). This gives \(\text{H}_{0} = r_{\text{e}}^{ - 2} \;\text{H}^{\prime}_{0} = - 2r_{\text{e}}^{ - 2} \;{\text{and}}\;\text{H}^{\prime\prime}_{0} = 6r_{\text{e}}^{ - 2}\),. With the aid of equations (47)–(A12), we have

$$b_{0} = \frac{1}{{r_{{\text{e}}}^{2} }} - \frac{1}{{ar_{{\text{e}}}^{2} }}\left( {3{-}q} \right)\left( {1 + qQ} \right) + \frac{3}{{a^{2} r_{{\text{e}}}^{2} }}\left( {1 + qQ} \right)^{2} ,$$
(55)
$$b_{1} = \frac{2}{{aQr_{{\text{e}}}^{2} }}\left( {2 - q} \right)\left( {1 + qQ} \right)^{2} - \frac{6}{{a^{2} Qr_{{\text{e}}}^{2} }}\left( {1 + qQ} \right)^{3} ,$$
(56)
$$b_{2} = - \frac{2}{{aQ^{2} r_{{\text{e}}}^{2} }}\left( {1 - q} \right)\left( {1 + qQ} \right)^{2} + \frac{6}{{a^{2} Q^{2} r_{{\text{e}}}^{2} }}\left( {1 + qQ} \right)^{4} .$$
(57)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyube, E.S., Samaila, H., Okon, I.B. et al. Energy levels of the improved Tietz oscillator in external magnetic and Aharonov-Bohm flux fields: the Pekeris approximation recipe. Eur. Phys. J. Plus 138, 251 (2023). https://doi.org/10.1140/epjp/s13360-023-03830-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03830-8

Navigation