Skip to main content

Advertisement

Log in

Cosmic jerk parameter in symmetric teleparallel cosmology

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we have examined the recently proposed modified symmetric teleparallel gravity, in which gravitational Lagrangian is given by an arbitrary function of non-metricity scalar Q. We have considered a constant jerk parameter to express the Hubble rate. Moreover, we have used 31 points of OHD datasets and 1701 points of Pantheon+ datasets to constraint our model parameters by means of the Markov Chain Monte Carlo analysis. The mean values and the best fit obtained give a consistent Hubble rate and deceleration parameter compared to the observation values. In order to study the current accelerated expansion scenario of the Universe with the presence of the cosmological fluid as a perfect fluid, we have considered two forms of teleparallel gravity. We have studied the obtained field equations with the proposed forms of f(Q) models, specifically, linear \(f\left( Q\right) =\alpha Q+\beta \) and nonlinear \(f\left( Q\right) =Q+mQ^{n}\) models. Next, we have discussed the physical behavior of cosmological parameters such as energy density, pressure, EoS parameter, and deceleration parameter for both model. To ensure the validity of our proposed cosmological models, we have checked all energy conditions. The properties of these parameters confirm that our models describe the current acceleration of the expansion of the Universe. This result is also corroborated by the energy conditions criteria. Finally, the EoS parameter for both models indicates that the cosmological fluid behaves like a quintessence dark energy model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availibility

There are no new data associated with this article.

References

  1. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. R.R. Caldwell, M. Doran, Phys. Rev. D 69, 103517 (2004)

    Article  ADS  Google Scholar 

  4. Z.Y. Huang et al., JCAP 0605, 013 (2006)

    Article  ADS  Google Scholar 

  5. T. Koivisto, D.F. Mota, Phys. Rev. D 73, 083502 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. S.F. Daniel, Phys. Rev. D 77, 103513 (2008)

    Article  ADS  Google Scholar 

  7. D.J. Eisenstein et al., Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  8. W.J. Percival et al., Mon. Not. R. Astron. Soc. 401, 2148 (2010)

    Article  ADS  Google Scholar 

  9. C.L. Bennett et al., Astrophys. J. Suppl. 148, 119–134 (2003)

    Article  ADS  Google Scholar 

  10. D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  11. G. Hinshaw et al., Astrophys. J. Suppl. 208, 19 (2013)

    Article  ADS  Google Scholar 

  12. N. Aghanim et al., Astron. Astrophys. 641, A6 (2020)

    Article  Google Scholar 

  13. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  Google Scholar 

  14. B. Ratra, P.J.E. Peebles, Phys. Rev. D 37, 3406 (1998)

    Article  ADS  Google Scholar 

  15. M. Sami, A. Toporensky, Mod. Phys. Lett. A 19, 1509 (2004)

    Article  ADS  Google Scholar 

  16. C. Armendariz-Picon et al., Phys. Rev. Lett. 85, 4438 (2000)

    Article  ADS  Google Scholar 

  17. J. Khoury, A. Weltman, Phys. Rev. Lett. 93, 171104 (2004)

    Article  ADS  Google Scholar 

  18. T. Padmanabhan, Phys. Rev. D 66, 021301 (2002)

    Article  ADS  Google Scholar 

  19. M.C. Bento et al., Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  20. R. Zarrouki, M. Bennai, Phys. Rev. D 82, 123506 (2010)

    Article  ADS  Google Scholar 

  21. M. Bouhmadi-López, A. Errahmani, P. Martín-Moruno, T. Ouali, Y. Tavakoli, Int. J. Modern Phys. D 24(10), 1550078 (2015)

    Article  ADS  Google Scholar 

  22. J. Morais, M. Bouhmadi-López, K. Sravan. Kumar, J. Marto, Y. Tavakoli, Phys. Dark Univ. 15, 7 (2017)

    Article  Google Scholar 

  23. M. Bouhmadi-López, D. Brizuela, I. Garay, J. Cosmol. Astropart. Phys. 1809(09), 031 (2018)

    Article  ADS  Google Scholar 

  24. A. Bouali, I. Albarran, M. Bouhmadi-López, T. Ouali, Phys. Dark Univ. 26, 100391 (2019)

    Article  Google Scholar 

  25. A. Bouali, I. Albarran, M. Bouhmadi-López, A. Errahmani, T. Ouali, Phys. Dark Univ. 34, 100907 (2021)

    Article  Google Scholar 

  26. S. Capozziello et al., Phys. Lett. B 632, 597 (2006)

    Article  ADS  Google Scholar 

  27. R.D. Blandford et al. arXiv preprint arXiv:astro-ph/0408279 (2004)

  28. T. Chiba, T. Nakamura, Prog. Theor. Phys. 100, 1077 (1998)

    Article  ADS  Google Scholar 

  29. V. Sahin, arXiv preprint arXiv:astro-ph/0211084 (2002)

  30. M. Visser, Class. Quantum Gravity 21, 2603 (2004)

    Article  ADS  Google Scholar 

  31. M. Visser, Gen. Relativ. Gravit. 37, 1541 (2005)

    Article  ADS  Google Scholar 

  32. U. Alam et al., Mon. Not. Roy. Astron. Soc. 344, 1057–1074 (2003)

    Article  ADS  Google Scholar 

  33. R.D. Rapetti et al., Mon. Not. Roy. Astron. Soc. 375, 1510 (2007)

    Article  ADS  Google Scholar 

  34. M. Zubair, L.R. Durrani, Eur. Phys. J. Plus 135, 8 (2020)

    Article  Google Scholar 

  35. J. Lu, L. Xu, M. Liu, Phys. Lett. B 699, 8 (2011)

    Article  Google Scholar 

  36. Y. Xu et al., Eur. Phys. J. C 79, 8 (2019)

    Article  Google Scholar 

  37. S. Mandal et al., Phys. Rev. D 102, 024057 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Mandal et al., Phys. Rev. D 102, 124029 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  39. T. Harko et al., Phys. Rev. D 98, 084043 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  40. N. Dimakis et al., Class. Quantum Grav. 38, 225003 (2021)

    Article  ADS  Google Scholar 

  41. S.H. Shekh, Phys. Dark Universe 33, 100850 (2021)

    Article  Google Scholar 

  42. M. Koussour et al., J. High Energy Astrophys 35, 43–51 (2022)

    Article  ADS  Google Scholar 

  43. M. Koussour et al., Phys. Dark Universe 36, 101051 (2022)

    Article  Google Scholar 

  44. J.B. Jimenez et al., Phys. Rev. D 98, 044048 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  45. J.B. Jimenez et al., Phys. Rev. D 101, 103507 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  46. J.V. Cunha, J.A.S.D. Lima, Mon. Notices R. Astron. Soc. 390, 1 (2008)

    Article  Google Scholar 

  47. E. Mortsell, C. Clarkson, J. Cosm. Astropar. Phys. 2009, 01 (2009)

    Article  Google Scholar 

  48. S.K.J. Pacif et al., Int. J. Geom. Meth. Mod. Phys. 14, 7 (2017)

    Article  MathSciNet  Google Scholar 

  49. R. Lazkoz et al., Phys. Rev. D 100, 104027 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  50. Chakrabarti et al., Eur. Phys. J. C 79, 454 (2019)

    Article  ADS  Google Scholar 

  51. L.E. Padilla et al., Universe 97, 213 (2021). arXiv:1903.11127

    Article  ADS  Google Scholar 

  52. G.S. Sharov, V.O. Vasiliev, Appl. Math. Model 6, 1 (2018). arXiv:1807.07323

    Google Scholar 

  53. S. Joan, Phys. Rev. D. 71, 255–262 (2005). arXiv:1209.0210

    Google Scholar 

  54. J.E. Bautista et al., Astron. Astrophys. 603, A12 (2017). arXiv:1702.00176

    Google Scholar 

  55. D. Brout et al., Astrophys. J. 938, 110 (2022). arXiv:2202.04077v2

    Article  ADS  Google Scholar 

  56. R.M. Wald, Chicago (University of Chicago Press, IL, 1984)

    Google Scholar 

  57. A. Raychaudhuri, Phys. Rev. D 98, 1123 (1955)

    Article  ADS  Google Scholar 

  58. S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 04, 115 (2007)

    Article  Google Scholar 

  59. J. Ehlers, Int. J. Mod. Phys. D 15, 1573 (2006)

    Article  ADS  Google Scholar 

  60. S. Arora et al., Phys. Dark Universe 31, 100790 (2021)

    Article  Google Scholar 

  61. S. Capozziello, S. Nojiri, S.D. Odintsov, Phys. Lett. B 781, 99 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  62. R. Solanki et al., arXiv preprint arXiv:2201.06521 (2022)

  63. Sokoliuk et al., arXiv preprint arXiv:2201.00743 (2022)

  64. K. El Bourakadi et al., Eur. Phys. J. Plus 136, 8 (2021)

    Article  Google Scholar 

  65. K. El Bourakadi et al., Eur. Phys. J. C 81, 12 (2021)

    Article  Google Scholar 

  66. A. Mukherjee, N. Banerjee, Phys. Rev. D 93, 043002 (2016)

    Article  ADS  Google Scholar 

  67. I. Ayuso et al., Phys. Rev. D 103, 6 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very much grateful to the honorable referee and to the editor for the illuminating suggestions that have significantly improved our work in terms of research quality, and presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Koussour.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koussour, M., Dahmani, S., Bennai, M. et al. Cosmic jerk parameter in symmetric teleparallel cosmology. Eur. Phys. J. Plus 138, 179 (2023). https://doi.org/10.1140/epjp/s13360-023-03827-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03827-3

Navigation