Skip to main content
Log in

Toward quantization of inhomogeneous field theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We explore the quantization of a \((1+1)\)-dimensional inhomogeneous scalar field theory in which Poincaré symmetry is explicitly broken. We show the ‘classical equivalence’ between a scalar field theory on curved spacetime background and its corresponding inhomogeneous scalar field theory. This implies that a hidden connection may exist among some inhomogeneous field theories, which corresponds to general covariance in field theory on curved spacetime. Based on the classical equivalence, we propose how to quantize a specific field theory with broken Poincaré symmetry inspired by standard field theoretic approaches, canonical and algebraic methods, on curved spacetime. Consequently, we show that the Unruh effect can be realized in inhomogeneous field theory and propose that it may be tested by a condensed matter experiment. We suggest that an algebraic approach is appropriate for the quantization of a generic inhomogeneous field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

Notes

  1. This is an old folklore realized in various cases. For instance, axion field is a field elevation of the original constant \(\theta\) angle parameter. The usefulness of space-dependent parameters in supersymmetric field theory is emphasized in [31].

  2. As described below, we use the term of classical equivalence within a class of IFT such that the conversion is valid and the classical equations of motion of FTCS and IFT are identical.

  3. This is not the conformally coupled case in \((1+1)\) dimensions.

  4. From the perspective of IFT, two IFTS’s of the exponential mass function and the constant mass can be understood as related by a Weyl rescaling of the flat metric \(\eta\) as \(\eta \rightarrow e^{2\omega (x)}\eta\), which is not a symmetry of the system.

  5. This second possibility will be studied in the subsequent work [32].

  6. The AdS and dS cases are presented in the following.

  7. A Gaussian state, which is also called a quasi-free state, is defined by the condition that the connected n-point functions of the state vanish, or any n-point functions can be obtained from 1- and 2-point functions.

  8. The normalization condition of an algebraic state \(\omega\), is \(\omega ({\textbf{1}})=1\), where \({\textbf{1}}\) is an identity element in the field algebra.

References

  1. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Les Ulis, 1988)

    Google Scholar 

  2. O. von Roos, Position-dependent effective masses in semiconductor theory. Phys. Rev. B 27, 7547 (1983)

    Article  ADS  Google Scholar 

  3. R.N. Costa Filho, M.P. Almeida, G.A. Farias, J.S. Andrade Jr., Displacement operator for quantum systems with position-dependent mass. Phys. Rev. A 84, 050102(R) (2011)

    Article  ADS  Google Scholar 

  4. P. Ring, P. Schuck, The Nuclear Many Body Problem (Springer, New York, 1980), p.211

    Book  Google Scholar 

  5. N. Chamel, Effective mass of free neutrons in neutron star crust. Nucl. Phys. A 773, 263–278 (2006). arXiv:nucl-th/0512034 [nucl-th]

    Article  ADS  Google Scholar 

  6. A.D. Linde, Hybrid inflation. Phys. Rev. D 49, 748–754 (1994). [arXiv:astro-ph/9307002 [astro-ph]]

    Article  ADS  Google Scholar 

  7. D. Bak, M. Gutperle, S. Hirano, A Dilatonic deformation of AdS(5) and its field theory dual. JHEP 05, 072 (2003). [arXiv:hep-th/0304129 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  8. E. D’Hoker, J. Estes, M. Gutperle, Interface Yang-Mills, supersymmetry, and Janus. Nucl. Phys. B 753, 16–41 (2006). [arXiv:hep-th/0603013 [hep-th]]

    Article  ADS  MATH  Google Scholar 

  9. C. Kim, E. Koh, K.M. Lee, Janus and multifaced supersymmetric theories. JHEP 06, 040 (2008). [arXiv:0802.2143 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  10. C. Kim, E. Koh, K.M. Lee, Janus and multifaced supersymmetric theories II. Phys. Rev. D 79, 126013 (2009). [arXiv:0901.0506 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  11. K.K. Kim, O.K. Kwon, Janus ABJM models with mass deformation. JHEP 08, 082 (2018). [arXiv:1806.06963 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. K.K. Kim, Y. Kim, O.K. Kwon, C. Kim, Aspects of massive ABJM models with inhomogeneous mass parameters. JHEP 12, 153 (2019). [arXiv:1910.05044 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. I. Arav, K.C.M. Cheung, J.P. Gauntlett, M.M. Roberts, C. Rosen, Spatially modulated and supersymmetric mass deformations of \({\cal{N} }\) = 4 SYM. JHEP 11, 156 (2020). [arXiv:2007.15095 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Y. Kim, O.K. Kwon, D.D. Tolla, Super Yang-Mills theories with inhomogeneous mass deformations. JHEP 12, 060 (2020). [arXiv:2008.00868 [hep-th]]

    ADS  MathSciNet  MATH  Google Scholar 

  15. O.K. Kwon, C. Kim, Y. Kim, Supersymmetric inhomogeneous field theories in 1+1 dimensions. JHEP 01, 140 (2022). [arXiv:2110.13393 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. R. Haag, Local Quantum Physics: Fields, Particles, Algebras (Springer, Verlag, 1992)

    Book  MATH  Google Scholar 

  17. R.M. Wald, Quantum Field Theory in Curved Space-Time and Black Hole Thermodynamics (University of Chicago, Chicago, 1994)

    MATH  Google Scholar 

  18. J. Yngvason, The Role of type III factors in quantum field theory. Rept. Math. Phys. 55, 135–147 (2005). [arXiv:math-ph/0411058 [math-ph]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. H. Halvorson, M. Muger, “Algebraic quantum field theory,” [arXiv:math-ph/0602036 [math-ph]]

  20. M. Benini, C. Dappiaggi, T.P. Hack, Quantum field theory on curved backgrounds–A primer. Int. J. Mod. Phys. A 28, 1330023 (2013). [arXiv:1306.0527 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. S. Hollands, R.M. Wald, Quantum fields in curved spacetime. Phys. Rept. 574, 1–35 (2015). [arXiv:1401.2026 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. I. Khavkine, V. Moretti, “Algebraic QFT in Curved Spacetime and quasifree Hadamard states: an introduction,” [arXiv:1412.5945 [math-ph]]

  23. S. Hollands, R.M. Wald, Axiomatic quantum field theory in curved spacetime. Commun. Math. Phys. 293, 85–125 (2010). [arXiv:0803.2003 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. K. Fredenhagen, K. Rejzner, Quantum field theory on curved spacetimes: axiomatic framework and examples. J. Math. Phys. 57(3), 031101 (2016). [arXiv:1412.5125 [math-ph]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. E. Witten, APS medal for exceptional achievement in research: invited article on entanglement properties of quantum field theory. Rev. Mod. Phys. 90(4), 045003 (2018). [arXiv:1803.04993 [hep-th]]

    Article  ADS  Google Scholar 

  26. E. Witten, “Why does quantum field theory in curved spacetime make sense? And what happens to the algebra of observables in the thermodynamic limit?,” [arXiv:2112.11614 [hep-th]]

  27. M. Dedushenko, “Snowmass white paper: the quest to define QFT,” [arXiv:2203.08053 [hep-th]]

  28. C. J. Fewster, K. Rejzner, “Algebraic Quantum Field Theory – an introduction,” [arXiv:1904.04051 [hep-th]]

  29. M. Wrochna, Quantum field theory in static external potentials and Hadamard states. Annales Henri Poincare 13, 1841–1871 (2012). [arXiv:1108.2982 [math-ph]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. J. Schlemmer, J. Zahn, The current density in quantum electrodynamics in external potentials. Annals Phys. 359, 31–45 (2015). [arXiv:1501.05912 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. N. Seiberg, Naturalness versus supersymmetric nonrenormalization theorems. Phys. Lett. B 318, 469–475 (1993). [arXiv:hep-ph/9309335 [hep-ph]]

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Ho, O. K. Kwon, S. A. Park, S. H. Yi, “Supersymmetric Backgrounds in \((1+1)\) dimensions and inhomogeneous field theory,” [arXiv:2211.05699 [hep-th]]

  33. G. Mandal, A.M. Sengupta, S.R. Wadia, Classical solutions of two-dimensional string theory. Mod. Phys. Lett. A 6, 1685–1692 (1991)

    Article  ADS  MATH  Google Scholar 

  34. S.B. Giddings, W.M. Nelson, Quantum emission from two-dimensional black holes. Phys. Rev. D 46, 2486–2496 (1992). [arXiv:hep-th/9204072 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  35. E. Witten, On string theory and black holes. Phys. Rev. D 44, 314–324 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. S.A. Fulling, Nonuniqueness of canonical field quantization in Riemannian space-time. Phys. Rev. D 7, 2850–2862 (1973)

    Article  ADS  Google Scholar 

  37. S. Takagi, Vacuum noise and stress induced by uniform acceleration: Hawking-Unruh effect in Rindler manifold of arbitrary dimension. Prog. Theor. Phys. Suppl. 88, 1–142 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  38. S.A. Fulling, Aspects of Quantum Field Theory in Curved Space-time (Cambridge University Press, Cambridge, 1989)

    Book  MATH  Google Scholar 

  39. S.A. Fulling, M. Sweeny, R.M. Wald, Singularity structure of the two point function in quantum field theory in curved space-time. Commun. Math. Phys. 63, 257–264 (1978)

    Article  ADS  MATH  Google Scholar 

  40. S.A. Fulling, F.J. Narcowich, R.M. Wald, Singularity structure of the two point function in quantum field theory in curved space-time. II. Annals Phys. 136, 243–272 (1981)

    Article  ADS  MATH  Google Scholar 

  41. B.S. Kay, R.M. Wald, Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space-times with a bifurcate killing horizon. Phys. Rept. 207, 49–136 (1991)

    Article  ADS  MATH  Google Scholar 

  42. M.J. Radzikowski, Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529–553 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. J. Hadamard, Lectures on Cauchy’s problem in linear differential equations (Dover, New York, 1952)

    MATH  Google Scholar 

  44. R.M. Wald, The back reaction effect in particle creation in curved space-time. Commun. Math. Phys. 54, 1–19 (1977)

    Article  ADS  MATH  Google Scholar 

  45. Y. Decanini, A. Folacci, Hadamard renormalization of the stress-energy tensor for a quantized scalar field in a general spacetime of arbitrary dimension. Phys. Rev. D 78, 044025 (2008). [arXiv:gr-qc/0512118 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  46. V. Moretti, Comments on the stress energy tensor operator in curved space-time. Commun. Math. Phys. 232, 189–221 (2003). [arXiv:gr-qc/0109048 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)

    Book  MATH  Google Scholar 

  48. We would like to thank Wontae Kim for the private discussion about this issue

  49. R.M. Wald, Trace anomaly of a conformally invariant quantum field in curved space-time. Phys. Rev. D 17, 1477–1484 (1978)

    Article  ADS  Google Scholar 

  50. J.J. Bisognano, E.H. Wichmann, On the duality condition for quantum fields. J. Math. Phys. 17, 303–321 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  51. B.S. Kay, The double wedge algebra for quantum fields on Schwarzschild and Minkowski space-times. Commun. Math. Phys. 100, 57 (1985)

    Article  ADS  MATH  Google Scholar 

  52. S.R. Coleman, There are no goldstone bosons in two-dimensions. Commun. Math. Phys. 31, 259–264 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. J.S. Dowker, Thermal properties of Green’s functions in Rindler, de Sitter, and Schwarzschild spaces. Phys. Rev. D 18(6), 1856 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  54. V. Moretti, L. Vanzo, Thermal Wightman functions and renormalized stress tensors in the Rindler wedge. Phys. Lett. B 375, 54–59 (1996). [arXiv:hep-th/9507139 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. W.G. Unruh, Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  56. L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, The Unruh effect and its applications. Rev. Mod. Phys. 80, 787–838 (2008). [arXiv:0710.5373 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. S.A. Fulling, J.H. Wilson, The equivalence principle at work in radiation from unaccelerated atoms and mirrors. Phys. Scripta 94(1), 014004 (2019). [arXiv:1805.01013 [quant-ph]]

    Article  ADS  Google Scholar 

  58. W.G. Unruh, Experimental black-hole evaporation? Phys. Rev. Lett. 46, 1351 (1981)

    Article  ADS  Google Scholar 

  59. P. Chen, T. Tajima, Testing Unruh radiation with ultraintense lasers. Phys. Rev. Lett. 83, 256–259 (1999)

    Article  ADS  Google Scholar 

  60. M.H. Lynch, E. Cohen, Y. Hadad, I. Kaminer, Experimental observation of acceleration-induced thermality. Phys. Rev. D 104(2), 025015 (2021). [arXiv:1903.00043 [gr-qc]]

    Article  ADS  Google Scholar 

  61. E.T. Akhmedov, K.V. Bazarov, D.V. Diakonov, Quantum fields in the future Rindler wedge. Phys. Rev. D 104(8), 085008 (2021). [arXiv:2106.01791 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  62. V. Chandrasekaran, R. Longo, G. Penington, E. Witten, “An Algebra of Observables for de Sitter Space,” [arXiv:2206.10780 [hep-th]]

  63. C.G. Callan Jr., S.B. Giddings, J.A. Harvey, A. Strominger, Evanescent black holes. Phys. Rev. D 45(4), R1005 (1992). [arXiv:hep-th/9111056 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  64. T. Jacobson, “Introduction to quantum fields in curved space-time and the Hawking effect,” [arXiv:gr-qc/0308048 [gr-qc]]

Download references

Acknowledgements

We appreciate conversations and discussions with Dongsu Bak, Seungjoon Hyun, Chanju Kim, Kyung Kiu Kim, Wontae Kim, Yoonbai Kim, Miok Park, and Driba D. Tolla. This work was supported by the National Research Foundation of Korea(NRF) grant with grant number NRF-2022R1F1A1073053(O.K.), NRF-2020R1A2C1014371(O.K. and J.H.), NRF-2020R1C1C1012330(S.-A.P.), NRF-2021R1A2C1003644(S.-H.Y.) and supported by Basic Science Research Program through the NRF funded by the Ministry of Education 2020R1A6A1A03047877(S.-H.Y. and J.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Heon Yi.

Appendices

Appendix

A Isometries in \((1+1)\)-dimensional background

In this Appendix, we summarize some formulae used in the main text. For the two-dimensional metric,

$$\begin{aligned} ds^2=e^{2\omega (x)}(-dt^2+dx^2). \end{aligned}$$
(71)

the non-vanishing Christoffel symbols are given by

$$\begin{aligned} \Gamma ^{t}_{tx}= \Gamma ^{t}_{xt}= \Gamma ^{x}_{xx} = \Gamma ^{x}_{tt}= \omega '(x), \end{aligned}$$
(72)

where \({}'\) denotes the differentiation with respect to x. In this geometry, the Ricci tensor and the curvature scalar are given by

$$\begin{aligned} R_{\mu \nu } = -g_{\mu \nu }\, \omega ''. \qquad R=-2e^{-2\omega }\omega ''. \end{aligned}$$
(73)

Now we show that the spacetime described by the above metric admits only a time-like Killing vector, excepting dS, AdS, and Minkowski spacetimes which have three Killing vectors. Killing condition on this background \(\nabla _{(\mu } \xi _{\nu )}=0\) becomes

$$\begin{aligned} \xi ^{x} = C(t) e^{-\omega (x)}, \qquad (\xi ^{x})^{\varvec{\cdot }}-(\xi ^{t})' =0, \qquad (\xi ^{t})^{\varvec{\cdot }} + \omega ' \xi ^{x}= (\xi ^{t})^{\varvec{\cdot }} - (\xi ^{x})' =0, \end{aligned}$$
(74)

where \(\varvec{\cdot }\) denotes the differentiation with respect to t. This condition leads to

$$\begin{aligned} \frac{{\ddot{C}}}{C} = \frac{(e^{-2\omega })''}{e^{-2\omega }} = A_{0} = \text{const}. \quad \text {if} \quad C\ne 0. \end{aligned}$$
(75)

When \(C=0\), one obtains \(\xi ^{\mu } = (1,0)\) or \(\xi = \partial _{t}\), up to normalization. In the case of \(C\ne 0\), we can solve the differential equation \(\frac{(e^{-2\omega })''}{e^{-2\omega }} = - A_{0}\), which leads to

$$\begin{aligned} e^{-\omega } = \left\{ \begin{array}{lll } D_{c}\cosh Bx + D_{s}\sinh Bx, &{} \text {when} &{} A_{0} = B^{2} > 0 \\ D\cos B(x-x_{0}), &{} \text {when} &{} A_{0} = - B^{2} < 0 \\ D_{1}x + D_{2}, &{} \text {when} &{} A_{0} = 0 \end{array} \right. , \end{aligned}$$
(76)

where \(D_{c/s}, D, D_{1/2}\), and \(x_{0}\) are integration constants. One can check that upper two cases (\(A_{0}\) is positive or negative) correspond to \(\hbox {dS}_{{2}}\) and \(\hbox {AdS}_{{2}}\), respectively. While the last one with \(D_{1}=0\) corresponds to the Minkowski spacetime. If \(D_{1}\ne 0\), then there is a singularity. This computation tells us that there is no other Killing vector except for \(\xi = \partial _{t}\) (\(C=0\) case) for a generic non-singular metric.

As an example, let us consider the case of \(A_{0} =B^{2}\) with \(D_{c}=0\). The independent Killing vectors up to normalization are obtained as

$$\begin{aligned} \xi = \xi ^{t}\partial _{t} + \xi ^{x}\partial _{\xi } = \left\{ \begin{array}{l} \cosh Bx\sinh Bt\, \partial _{t} + \sinh Bx \cosh Bt\, \partial _{x} \\ \cosh Bx\cosh Bt\, \partial _{t} + \sinh Bx \sinh Bt\, \partial _{x} \\ \partial _{t} \end{array} \right. . \end{aligned}$$
(77)

One can check that these three Killing vectors form a SO(2, 1) algebra. Indeed, performing the coordinate transformation \(r=r_{H}\coth Bx\), we obtain the Rindler wedge of \(\hbox {AdS}_{{2}}\) geometry. In the case of \(A_{0} =B^{2}\) with \(D_{s}=0\), one obtains

$$\begin{aligned} \xi = \xi ^{t}\partial _{t} + \xi ^{x}\partial _{\xi } = \left\{ \begin{array}{l} \sinh Bx\sinh Bt\, \partial _{t} + \cosh Bx \cosh Bt\, \partial _{x} \\ \sinh Bx\cosh Bt\, \partial _{t} + \cosh Bx \sinh Bt\, \partial _{x} \\ \partial _{t} \end{array} \right. , \end{aligned}$$
(78)

which corresponds to the Killing vectors in the static path of \(\hbox {dS}_{{2}}\) spacetime.

B canonical quantization in curved spacetime

In this Appendix, we review the quantization procedure in a \((1+1)\)-dimensional curved background [47, 64]. We consider the quadratic action (6) for the real scalar field with the coupling \(\xi\) on a background geometry. The equation of motion of the model (6) is given by

$$\begin{aligned} \left( -\Box + m_0^2 + \xi {\mathcal {R}} \right) \phi = 0, \qquad \Box \equiv \frac{1}{\sqrt{-g}} \partial _{\mu }\left( \sqrt{-g} g^{\mu \nu } \partial _{\nu }\right) . \end{aligned}$$
(79)

The canonical momentum for the field \(\phi\) at a constant time t is read as

$$\begin{aligned} \pi (t,x) \equiv \frac{\delta S_{\textrm{FTCS}}}{\delta \partial _{t} \phi (t,x)} = \sqrt{h} \, n^\mu \partial _{\mu } \phi (t,x), \end{aligned}$$
(80)

where \(n^\mu = -\frac{g^{\mu 0}}{\sqrt{-g^{00}}}\) is the unit normal vector to the hypersurface \(\Sigma\), and h is the determinant of the induced spatial metric on the surface. In order to quantize the field \(\phi (t,x)\), one has to promote the fields, \(\phi (t,x)\) and \(\pi (t,x)\), to Hermitian operators and require the commutation relation at a fixed time t,

$$\begin{aligned}&{[} \phi (t,x), \pi (t, y) ] = i\delta (x-y). \nonumber \\&{[} \phi (t,x), \phi (t, y) ] = [ \pi (t,x), \pi (t, y) ]=0. \end{aligned}$$
(81)

The commutation relations in (81) are the same forms of those in the Minkowski spacetime. Following the quantization procedure in the Minkowski spacetime, we define an inner product

$$\begin{aligned} \langle \phi _1,\, \phi _2 \rangle = \int _\Sigma d \Sigma ^\mu J_\mu , \end{aligned}$$
(82)

where \(d \Sigma ^\mu \equiv n^\mu d \Sigma\) and \(J_\mu \equiv i \left( \phi _1^* \partial _{\mu } \phi _2 - \partial _{\mu } \phi _1^* \phi _2 \right)\) is a current satisfying the on-shell relation \(\nabla ^\mu J_\mu = 0\). This bracket is called the Klein-Gordon inner product, and it does not depend on the choice of the spacelike hypersurface \(\Sigma\) in the case that the fields decay sufficiently fast at spatial infinity. That is, if we consider another hypersurface \(\Sigma '\) at a different time \(t'\), we have the relation

$$\begin{aligned} \int _\Sigma d \Sigma ^\mu J_\mu - \int _{\Sigma '} d \Sigma ^\mu J_\mu = \int _{M} d^2 x \sqrt{-g} \, \nabla ^\mu J_\mu = 0, \end{aligned}$$
(83)

where M is the manifold bounded by the hypersurfaces, \(\Sigma\) and \(\Sigma '\). This independence of the hypersurfaces realizes the time-independence of the inner product in the Minkowski spacetime. For complex functions f and g satisfying the equation of motion (79), the inner product satisfies the following relations,

$$\begin{aligned} \langle f,\, g\rangle ^* = - \langle f^*,\, g^* \rangle = \langle g,\, f\rangle , \end{aligned}$$
(84)

which implies \(\langle f,\, f^*\rangle =0\). In analogy with the quantization of \(\phi\) in Minkowski spacetime, we define the annihilation operator related to the function f in terms of the inner product,

$$\begin{aligned} a(f) = \langle f,\, \phi \rangle , \end{aligned}$$
(85)

which is independent of the hypersurface \(\Sigma\). Using the properties of the inner product in (84) and the Hermiticity of the field operator \(\phi\), we obtain the Hermitian conjugate of a(f), \(a^\dagger (f) = - a (f^*)\). Using these relations and the commutation relations in (81), we obtain the following commutation relations

$$\begin{aligned} {[}a(f), a^\dagger (g)] = \langle f,\, g\rangle , \quad [a(f), a (g)] = -\langle f,\, g^*\rangle , \quad [a^\dagger (f), a^\dagger (g)] =- \langle f^*,\, g\rangle . \end{aligned}$$
(86)

When the complex solution f satisfies \(\langle f,\, f\rangle = 1\), by setting \(g = f\) in (86) one can easily see that the relations in (86) are nothing but commutation relations of number operators in harmonic oscillator. Therefore in order to quantize the scalar field \(\phi\) in a curved background we have to find a complete orthonormal basis of solutions to (79) satisfying the inner product relations

$$\begin{aligned} \langle u_i,\, u_j\rangle = \delta _{ij}, \quad \langle u^*_i,\, u_j\rangle = 0, \quad \langle u_i^*,\, u_j^*\rangle = - \delta _{ij}, \end{aligned}$$
(87)

where corresponding annihilation and creation operators are denoted by \(a_i\) and \(a_i^\dagger\), respectively. Then one can expand the scalar field \(\phi\) as

$$\begin{aligned} \phi (t,x) =\sum _{i} \left( a_i u_i + a_i^\dagger u_i^*\right) \end{aligned}$$
(88)

with the commutation relations \([a_i,\, a_j^\dagger ] = \delta _{ij}\). The Fock space can be constructed by these operators.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, OK., Ho, J., Park, SA. et al. Toward quantization of inhomogeneous field theory. Eur. Phys. J. Plus 138, 202 (2023). https://doi.org/10.1140/epjp/s13360-023-03822-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03822-8

Navigation