Skip to main content
Log in

Form factors and branching fraction calculations for \(B_s \rightarrow D_s^{(*)} \ell ^+ \nu _\ell\) in view of LHCb observation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In light of the LHCb observations about the \(B_s \rightarrow D_s^{(*)}\ell \nu _\ell\) semileptonic decays, we study these channels within the standard model framework of covariant confined quark model. The necessary transition form factors are computed in the entire dynamical range of momentum transfer squared with built-in infrared confinement. Our computed ratios of the decay widths from tau mode to muon mode for \(D_s\) and \(D_s^*\) mesons are found to be \(R(D_s) = 0.271 \pm 0.069\) and \(R(D_s^*) = 0.240 \pm 0.038\). We further determine the ratio of the decay width from \(D_s\) and \(D_s^*\) channel for muon mode \(\Gamma (B_s \rightarrow D_s \mu ^+ \nu _\mu )/\Gamma (B_s \rightarrow D_s^* \mu ^+ \nu _\mu ) = 0.451 \pm 0.093\). Our results are in excellent agreement with the data from the latest LHCb experiments as well as lattice quantum chromodynamics simulations. We also compare the shape of differential decay distribution for \(B_s \rightarrow D_s^* \mu ^+ \nu _\mu\) with the LHCb data, and our results are in very good agreement throughout all the individual bins. Some other physical observables such as forward-backward asymmetry and longitudinal polarizations of leptons in the final state are also computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availibility Statement

There are no data associated with the manuscript.

Notes

  1. The inclusion of charge-conjugate processes is implied throughout this paper.

References

  1. J. Albrecht, D. van Dyk, C. Langenbruch, Prog. Part. Nucl. Phys. 120, 103885 (2021). https://doi.org/10.1016/j.ppnp.2021.103885

    Article  Google Scholar 

  2. R. Aaij et al., Phys. Rev. D 101(7), 072004 (2020). https://doi.org/10.1103/PhysRevD.101.072004

    Article  ADS  Google Scholar 

  3. E. McLean, C.T.H. Davies, J. Koponen, A.T. Lytle, Phys. Rev. D 101(7), 074513 (2020). https://doi.org/10.1103/PhysRevD.101.074513

    Article  ADS  Google Scholar 

  4. J. Harrison, C.T.H. Davies, Phys. Rev. D 105(9), 094506 (2022). https://doi.org/10.1103/PhysRevD.105.094506

    Article  ADS  Google Scholar 

  5. X.Q. Hu, S.P. Jin, Z.J. Xiao, Chin. Phys. C 44(5), 053102 (2020). https://doi.org/10.1088/1674-1137/44/5/053102

    Article  ADS  Google Scholar 

  6. Y. Zhang, T. Zhong, H.B. Fu, W. Cheng, X.G. Wu, Phys. Rev. D 103(11), 114024 (2021). https://doi.org/10.1103/PhysRevD.103.114024

    Article  ADS  Google Scholar 

  7. M. Bordone, N. Gubernari, D. van Dyk, M. Jung, Eur. Phys. J. C 80(4), 347 (2020). https://doi.org/10.1140/epjc/s10052-020-7850-9

    Article  ADS  Google Scholar 

  8. R.H. Li, C.D. Lu, Y.M. Wang, Phys. Rev. D 80, 014005 (2009). https://doi.org/10.1103/PhysRevD.80.014005

    Article  ADS  Google Scholar 

  9. P. Blasi, P. Colangelo, G. Nardulli, N. Paver, Phys. Rev. D 49, 238 (1994). https://doi.org/10.1103/PhysRevD.49.238

    Article  ADS  Google Scholar 

  10. R.C. Verma, J. Phys. G 39, 025005 (2012). https://doi.org/10.1088/0954-3899/39/2/025005

  11. X.W. Kang, T. Luo, Y. Zhang, L.Y. Dai, C. Wang, Eur. Phys. J. C 78(11), 909 (2018). https://doi.org/10.1140/epjc/s10052-018-6385-9

    Article  ADS  Google Scholar 

  12. G.Li, F.l. Shao, W.Wang, Phys. Rev. D 82, 094031 (2010). https://doi.org/10.1103/PhysRevD.82.094031

  13. R.N. Faustov, V.O. Galkin, Phys. Rev. D 87(3), 034033 (2013). https://doi.org/10.1103/PhysRevD.87.034033

    Article  ADS  Google Scholar 

  14. X.J. Chen, H.F. Fu, C.S. Kim, G.L. Wang, J. Phys. G 39, 045002 (2012). https://doi.org/10.1088/0954-3899/39/4/045002

    Article  ADS  Google Scholar 

  15. S.M. Zhao, X. Liu, S.J. Li, Eur. Phys. J. C 51, 601 (2007). https://doi.org/10.1140/epjc/s10052-007-0322-7

    Article  ADS  Google Scholar 

  16. G.V. Efimov, M.A. Ivanov, The Quark confinement model of hadrons (IOP, Bristol, 1993)

    Google Scholar 

  17. T. Branz, A. Faessler, T. Gutsche, M.A. Ivanov, J.G. Korner, V.E. Lyubovitskij, Phys. Rev. D 81, 034010 (2010). https://doi.org/10.1103/PhysRevD.81.034010

    Article  ADS  Google Scholar 

  18. M.A. Ivanov, J.G. Korner, S.G. Kovalenko, P. Santorelli, G.G. Saidullaeva, Phys. Rev. D 85, 034004 (2012). https://doi.org/10.1103/PhysRevD.85.034004

    Article  ADS  Google Scholar 

  19. T. Gutsche, M.A. Ivanov, J.G. Korner, V.E. Lyubovitskij, P. Santorelli, Phys. Rev. D 86, 074013 (2012). https://doi.org/10.1103/PhysRevD.86.074013

    Article  ADS  Google Scholar 

  20. N.R. Soni, A. Issadykov, A.N. Gadaria, J.J. Patel, J.N. Pandya, Eur. Phys. J. A 58(3), 39 (2022). https://doi.org/10.1140/epja/s10050-022-00685-y

    Article  ADS  Google Scholar 

  21. N.R. Soni, J.N. Pandya, Phys. Rev. D 96(1), 016017 (2017). https://doi.org/10.1103/PhysRevD.96.016017 . [Erratum: Phys. Rev. D 99, 059901 (2019). https://doi.org/10.1103/PhysRevD.99.059901]

    Article  ADS  Google Scholar 

  22. N.R. Soni, M.A. Ivanov, J.G. Körner, J.N. Pandya, P. Santorelli, C.T. Tran, Phys. Rev. D 98(11), 114031 (2018). https://doi.org/10.1103/PhysRevD.98.114031

    Article  ADS  Google Scholar 

  23. M.A. Ivanov, J.G. Körner, J.N. Pandya, P. Santorelli, N.R. Soni, C.T. Tran, Front. Phys. (Beijing) 14(6), 64401 (2019). https://doi.org/10.1007/s11467-019-0908-1

    Article  ADS  Google Scholar 

  24. N.R. Soni, A.N. Gadaria, J.J. Patel, J.N. Pandya, Phys. Rev. D 102(1), 016013 (2020). https://doi.org/10.1103/PhysRevD.102.016013

    Article  ADS  Google Scholar 

  25. N.R. Soni, J.N. Pandya, EPJ Web Conf. 202, 06010 (2019). https://doi.org/10.1051/epjconf/201920206010

    Article  Google Scholar 

  26. N.R. Soni, J.N. Pandya, Springer Proc. Phys. 234, 115 (2019). https://doi.org/10.1007/978-3-030-29622-3_16

    Article  Google Scholar 

  27. N.R. Soni, J.N. Pandya, Springer Proc. Phys. 261, 85 (2021). https://doi.org/10.1007/978-981-33-4408-2_13

    Article  Google Scholar 

  28. S. Dubnicka, A.Z. Dubnickova, A. Issadykov, M.A. Ivanov, A. Liptaj, Phys. Rev. D 96(7), 076017 (2017). https://doi.org/10.1103/PhysRevD.96.076017

    Article  ADS  Google Scholar 

  29. A. Issadykov, EPJ Web Conf. 177, 09007 (2018). https://doi.org/10.1051/epjconf/201817709007

    Article  Google Scholar 

  30. A. Issadykov, M.A. Ivanov, G. Nurbakova, EPJ Web Conf. 158, 03002 (2017). https://doi.org/10.1051/epjconf/201715803002

    Article  Google Scholar 

  31. M.A. Ivanov, J.G. Körner, C.T. Tran, Phys. Rev. D 92(11), 114022 (2015). https://doi.org/10.1103/PhysRevD.92.114022

    Article  ADS  Google Scholar 

  32. M.A. Ivanov, J.G. Körner, C.T. Tran, Phys. Rev. D 94(9), 094028 (2016). https://doi.org/10.1103/PhysRevD.94.094028

    Article  ADS  Google Scholar 

  33. M.A. Ivanov, J.G. Körner, C.T. Tran, Phys. Rev. D 95(3), 036021 (2017). https://doi.org/10.1103/PhysRevD.95.036021

    Article  ADS  Google Scholar 

  34. S. Weinberg, Phys. Rev. 130, 776 (1963). https://doi.org/10.1103/PhysRev.130.776

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Salam, Nuovo Cim. 25, 224 (1962). https://doi.org/10.1007/BF02733330

    Article  ADS  Google Scholar 

  36. M.A. Ivanov, V.E. Lyubovitskij, Phys. Lett. B 408, 435 (1997). https://doi.org/10.1016/S0370-2693(97)00776-4

    Article  ADS  Google Scholar 

  37. A. Faessler, T. Gutsche, M.A. Ivanov, V.E. Lyubovitskij, P. Wang, Phys. Rev. D 68, 014011 (2003). https://doi.org/10.1103/PhysRevD.68.014011

    Article  ADS  Google Scholar 

  38. P.A. Zyla et al., PTEP 2020(8), 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

    Article  Google Scholar 

  39. A. Alberti, P. Gambino, K.J. Healey, S. Nandi, Phys. Rev. Lett. 114(6), 061802 (2015). https://doi.org/10.1103/PhysRevLett.114.061802

    Article  ADS  Google Scholar 

  40. R. Aaij et al., JHEP 12, 144 (2020). https://doi.org/10.1007/JHEP12(2020)144

    Article  ADS  Google Scholar 

  41. M. Wirbel, B. Stech, M. Bauer, Z. Phys. C 29, 637 (1985). https://doi.org/10.1007/BF01560299

    Article  ADS  Google Scholar 

  42. A. Issadykov, M.A. Ivanov, Phys. Lett. B 783, 178 (2018). https://doi.org/10.1016/j.physletb.2018.06.056

    Article  ADS  Google Scholar 

  43. G. Caria et al., Phys. Rev. Lett. 124(16), 161803 (2020). https://doi.org/10.1103/PhysRevLett.124.161803

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Mikhail A. Ivanov for useful discussions of some aspects of this work. J.N.P. acknowledges financial support from University Grants Commission of India under Major Research Project F.No. 42-775/2013(SR), DST-PURSE, DST-FIST and UGC-DRS schemes. N.R.S. would also like to thank Akash Hingu for his help in plotting Fig. 4. This research has been funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP09057862).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Pandya.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, N.R., Issadykov, A., Gadaria, A.N. et al. Form factors and branching fraction calculations for \(B_s \rightarrow D_s^{(*)} \ell ^+ \nu _\ell\) in view of LHCb observation. Eur. Phys. J. Plus 138, 163 (2023). https://doi.org/10.1140/epjp/s13360-023-03779-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03779-8

Navigation