Skip to main content
Log in

Mass-ratio condition for non-binding of three two-component particles with contact interactions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The binding of two heavy fermions interacting with a light particle via a contact interaction is possible only for a sufficiently large heavy-light mass ratio. The two-variable inequality is derived to determine the specific mass-ratio bound providing the absence of three-body bound states for lower values of the mass ratio. By means of this inequality, the mass-ratio bound is found to be 5.26 for the total angular momentum and parity \(L^P = 1^-\). For other \(L^P\) sectors, the mass-ratio bounds providing the absence of three-body bound states is found in a similar way. For generality, the method is extended to determine also the mass-ratio bounds for a system consisting of two identical bosons and a distinct particle for different \(L^P\) (\(L > 0\)) sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. D.S. Petrov, Three-body problem in Fermi gases with short-range interparticle interaction. Phys. Rev. A 67, 010703(R) (2003). https://doi.org/10.1103/PhysRevA.67.010703

    Article  ADS  Google Scholar 

  2. O.I. Kartavtsev, A.V. Malykh, Low-energy three-body dynamics in binary quantum gases. J. Phys. B 40, 1429 (2007). https://doi.org/10.1088/0953-4075/40/7/011

    Article  ADS  Google Scholar 

  3. J. Levinsen, T.G. Tiecke, J.T.M. Walraven, D.S. Petrov, Atom-dimer scattering and long-lived trimers in fermionic mixtures. Phys. Rev. Lett. 103, 153202 (2009). https://doi.org/10.1103/PhysRevLett.103.153202

    Article  ADS  Google Scholar 

  4. K. Helfrich, H.W. Hammer, D.S. Petrov, Three-body problem in heteronuclear mixtures with resonant interspecies interaction. Phys. Rev. A 81, 042715 (2010). https://doi.org/10.1103/PhysRevA.81.042715

    Article  ADS  Google Scholar 

  5. S. Endo, P. Naidon, M. Ueda, Universal physics of 2+1 particles with non-zero angular momentum. Few-Body Syst. 51, 207 (2011). https://doi.org/10.1007/s00601-011-0229-6

    Article  ADS  Google Scholar 

  6. Y. Castin, E. Tignone, Trimers in the resonant (\(2+1\))-fermion problem on a narrow Feshbach resonance: Crossover from efimovian to hydrogenoid spectrum. Phys. Rev. A 84, 062704 (2011). https://doi.org/10.1103/PhysRevA.84.062704

    Article  ADS  Google Scholar 

  7. A. Safavi-Naini, S.T. Rittenhouse, D. Blume, H.R. Sadeghpour, Nonuniversal bound states of two identical heavy fermions and one light particle. Phys. Rev. A 87, 032713 (2013). https://doi.org/10.1103/PhysRevA.87.032713

    Article  ADS  Google Scholar 

  8. M. Jag, M. Zaccanti, M. Cetina, R.S. Lous, F. Schreck, R. Grimm, D.S. Petrov, J. Levinsen, Observation of a strong atom-dimer attraction in a mass-imbalanced Fermi-Fermi mixture. Phys. Rev. Lett. 112, 075302 (2014). https://doi.org/10.1103/PhysRevLett.112.075302

    Article  ADS  Google Scholar 

  9. O.I. Kartavtsev, A.V. Malykh, Universal description of three two-component fermions. EPL 115, 36005 (2016). https://doi.org/10.1209/0295-5075/115/36005

    Article  ADS  Google Scholar 

  10. S. Becker, A. Michelangeli, A. Ottolini, Spectral analysis of the 2 + 1 fermionic trimer with contact interactions. Math. Phys. Anal. Geom. 21, 35 (2018). https://doi.org/10.1007/s11040-018-9294-0

    Article  MathSciNet  MATH  Google Scholar 

  11. R.A. Minlos, On pointlike interaction between three particles: Two fermions and another particle. ISRN Math. Phys. 2012, 230245 (2012). https://doi.org/10.5402/2012/230245

    Article  MATH  Google Scholar 

  12. R.A. Minlos, A system of three quantum particles with point-like interactions. Usp. Mat. Nauk 69(3), 145 (2014). https://doi.org/10.1070/rm2014v069n03abeh004900

    Article  MATH  Google Scholar 

  13. R.A. Minlos, On point-like interaction of three particles: two fermions and another particle II. Mosc Math. J. 14, 617 (2014). https://doi.org/10.17323/1609-4514-2014-14-3-617-637

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Correggi, G. Dell’antonio, D. Finco, A. Michelangeli, A. Teta, A class of Hamiltonians for a three-particle fermionic system at unitarity. Math. Phys. Anal. Geom. 18, 32 (2015). https://doi.org/10.1007/s11040-015-9195-4

    Article  MathSciNet  MATH  Google Scholar 

  15. O.I. Kartavtsev, A.V. Malykh, Universal description of the rotational-vibrational spectrum of three particles with zero-range interactions. JETP Lett. 86, 625 (2007). https://doi.org/10.1134/S002136400722002X

    Article  ADS  Google Scholar 

  16. K. Helfrich, H.W. Hammer, On the Efimov effect in higher partial waves. J. Phys. B 44, 215301 (2011). https://doi.org/10.1088/0953-4075/44/21/215301

    Article  ADS  Google Scholar 

  17. A. Michelangeli, C. Schmidbauer, Binding properties of the (2+1)-fermion system with zero-range interspecies interaction. Phys. Rev. A 87, 053601 (2013). https://doi.org/10.1103/PhysRevA.87.053601

    Article  ADS  Google Scholar 

  18. J.H. Macek, Properties of autoionizing states of He. J. Phys. B 1, 831 (1968). https://doi.org/10.1088/0022-3700/1/5/309

    Article  ADS  Google Scholar 

  19. B. Simon, The bound state of weakly coupled Schrödinger operators in one and two dimensions. Ann. Phys. 97(2), 279–288 (1976). https://doi.org/10.1016/0003-4916(76)90038-5

    Article  ADS  MATH  Google Scholar 

  20. O.I. Kartavtsev, A.V. Malykh, Three two-component fermions with contact interactions: correct formulation and energy spectrum, arXiv:1904.04943 [cond-mat.quant-gas] https://doi.org/10.48550/arXiv.1904.04943

  21. J.L. Ballot, M. Fabre de la Ripelle, J.S. Levinger, Coupled adiabatic approximation in the three-body problem. Phys. Rev. C 26, 2301–2309 (1982). https://doi.org/10.1103/PhysRevC.26.2301

    Article  ADS  Google Scholar 

  22. H.T. Coelho, J.E. Hornos, Proof of basic inequalities in the hyperspherical formalism for the n-body problem. Phys. Rev. A 43, 6379 (1991). https://doi.org/10.1103/PhysRevA.43.6379

    Article  ADS  Google Scholar 

  23. H. Hogreve, The overcritical Dirac-Coulomb operator. J. Phys. A 46, 025301 (2013). https://doi.org/10.1088/1751-8113/46/2/025301

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. M. Gallone, A. Michelangeli, Discrete spectra for critical Dirac-Coulomb Hamiltonians. J. Math. Phys. 59, 062108 (2018). https://doi.org/10.1063/1.5011305

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. R. Minlos, L. Faddeev, On the point interaction for a three-particle system in quantum mechanics. Dokl. Akad. Nauk SSSR 141, 1335 (1961).

    Google Scholar 

  26. S. Albeverio, R. Hoegh-Krohn, T.T. Wu, A class of exactly solvable three-body quantum mechanical problems and the universal low-energy behavior. Phys. Lett. A 83, 105 (1981). https://doi.org/10.1016/0375-9601(81)90507-7

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Michelangeli, Models of zero-range interaction for the bosonic trimer at unitarity. Rev. Math. Phys. 33, 2150010 (2021). https://doi.org/10.1142/S0129055X21500100

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Basti, C. Cacciapuoti, D. Finco, A. Teta, Three-body Hamiltonian with regularized zero-range interactions in dimension three, Ann. Henri Poincaré (2022). [arXiv:math-ph/2107.07188]. https://doi.org/10.1007/s00023-022-01214-9

  29. D. Ferretti, A. Teta, Regularized Zero-Range Hamiltonian for a Bose Gas with an Impurity, math-ph/2202.12765 https://doi.org/10.48550/arXiv.2202.12765

  30. O.I. Kartavtsev, A.V. Malykh, Minlos-Faddeev regularization of zero-range interactions in the three-body problem. JETP Lett. 116(3), 179–184 (2022). https://doi.org/10.1134/S002136402260118X

    Article  ADS  Google Scholar 

  31. V. Brattsev, The ground state energy of a molecule in adiabatic approximation, Dokl. Akad. Nauk SSSR 160, 570 (1965). http://mi.mathnet.ru/eng/dan/v160/i3/p570

  32. S.T. Epstein, Ground-state energy of a molecule in the adiabatic approximation. J. Chem. Phys. 44(2), 836–837 (1966). https://doi.org/10.1063/1.1726771

    Article  ADS  Google Scholar 

  33. A.F. Starace, G.L. Webster, Atomic hydrogen in a uniform magnetic field: Low-lying energy levels for fields below \({10}^{9}\) g. Phys. Rev. A 19, 1629–1640 (1979). https://doi.org/10.1103/PhysRevA.19.1629

    Article  ADS  Google Scholar 

  34. Yu.N. Ovchinnikov, I.M. Sigal, Number of bound states of three-body systems and Efimov’s effect. Ann. Phys. 123, 274–295 (1979). https://doi.org/10.1016/0003-4916(79)90339-7

    Article  ADS  MathSciNet  Google Scholar 

  35. Antonio C. Fonseca, Edward F. Redish, P.E. Shanley, Efimov effect in an analytically solvable model. Nucl. Phys. A 320, 273–288 (1979). https://doi.org/10.1016/0375-9474(79)90189-1

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Malykh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartavtsev, O.I., Malykh, A.V. Mass-ratio condition for non-binding of three two-component particles with contact interactions. Eur. Phys. J. Plus 138, 147 (2023). https://doi.org/10.1140/epjp/s13360-023-03738-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03738-3

Navigation