Skip to main content

Advertisement

Log in

Modeling and simulation of the influence of quantum dots density on solar cell properties

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Based on the finite element method using the FEniCS computing platform and python programming, we solve the Schrödinger equation within the effective mass approximation. Its solution gives us the necessary energy for an electron to transit from an intermediate band to a conduction band, as well as the distribution of probability density within the system. In this work, we have investigated the efficiency of the InAs/GaAs pyramid quantum dot intermediate band solar cell (PQD-IBSC) as a function of the structure parameters and quantum dot density. The simulation results indicated the strong dependence of the efficiency of PQD-IBSC on the confinement effect, quantum dot number or quantum dot density and coupling strength. The conversion efficiency grows from 14.4587% to the optimal efficiency 17.8807%. Generally, the best efficiency is obtained for small barrier width, large quantum dot height and great quantum dot density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. M.A. Danandeh, S.M. Mousavi G, Comparative and comprehensive review of maximum power point tracking methods for PV cells. Renew. Sustain. Energy Rev. 82, 2743–2767 (2018). https://doi.org/10.1016/j.rser.2017.10.009

    Article  Google Scholar 

  2. M.A. Green, Third Generation Photovoltaics (Springer, Berlin, 2006)

    Google Scholar 

  3. W. Hu, M. Igarashi, M. Lee, Y. Li, S. Samukawa, 50% Efficiency intermediate band solar cell design using highly periodical silicon nanodisk array, in 2012 International Electron Devices Meeting (IEEE, 2012). https://doi.org/10.1109/IEDM.2012.6478987.

  4. H. Abboudi, H. El Ghazi, F. Benhaddou, R. En-Nadir, A. Jorio, I. Zorkani, Temperature-related photovoltaic characteristics of (In, Ga)N single-intermediate band quantum well solar cells for different shapes. Phys. B Condens. Matter. (2022). https://doi.org/10.1016/j.physb.2021.413495

    Article  Google Scholar 

  5. P. Guyot-Sionnest, Colloidal quantum dots. Comptes Rendus Phys. 9, 777–787 (2008). https://doi.org/10.1016/j.crhy.2008.10.006

    Article  ADS  Google Scholar 

  6. H. Zhao, F. Rosei, Colloidal quantum dots for solar technologies. Chem 3, 229–258 (2017). https://doi.org/10.1016/j.chempr.2017.07.007

    Article  Google Scholar 

  7. X. Xin, Quantum Dot Solar Cells, 1st edn. (Springer, New York, 2014)

    Google Scholar 

  8. G.C. Tiriba, E.C. Niculescu, L.M. Burileanu, Hydrostatic pressure and magnetic field effects on donor states in pyramidal quantum dots. Superlattices Microstruct. 75, 749–760 (2014). https://doi.org/10.1016/j.spmi.2014.09.010

    Article  ADS  Google Scholar 

  9. A. Baranov, E. Tournié, Semiconductor Lasers, 1st edn. (Woodhead Publishing Limited, Cambridge, 2013)

    Book  Google Scholar 

  10. A. Luque, A. Martí, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 5014–5017 (1997). https://doi.org/10.1103/PhysRevLett.78.5014

    Article  ADS  Google Scholar 

  11. A. Luque, A. Martí, C. Stanley, Understanding intermediate-band solar cells. Nat. Photon 6, 146–152 (2012). https://doi.org/10.1038/nphoton.2012.1

    Article  ADS  Google Scholar 

  12. A.S. Lin, W. Wang, J.D. Phillips, Model for intermediate band solar cells incorporating carrier transport and recombination. J. Appl. Phys. 105, 064512 (2009). https://doi.org/10.1063/1.3093962

    Article  ADS  Google Scholar 

  13. A.M. Kechiantz, L.M. Kocharyan, H.M. Kechiyants, Band alignment and conversion efficiency in Si/Ge type-II quantum dot intermediate band solar cells. Nanotechnology. 18, 405401 (2007). https://doi.org/10.1088/0957-4484/18/40/405401

    Article  Google Scholar 

  14. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). https://doi.org/10.1063/1.1736034

    Article  ADS  Google Scholar 

  15. P.G. Linares, C.D. Farmer, E. Antolín, S. Chakrabarti, A.M. Sánchez, T. Ben, S.I. Molina, C.R. Stanley, A. Martí, A. Luque, Inx(GayAl1-y)1-xAs quaternary alloys for quantum dot intermediate band solar cells. Energy Procedia 2, 133–141 (2010). https://doi.org/10.1016/j.egypro.2010.07.019

    Article  Google Scholar 

  16. P.G. Linares, A. Martí, E. Antolín, C.D. Farmer, Í. Ramiro, C.R. Stanley, A. Luque, Voltage recovery in intermediate band solar cells. Sol. Energy Mater. Sol. Cells. 98, 240–244 (2012). https://doi.org/10.1016/j.solmat.2011.11.015

    Article  Google Scholar 

  17. T.A. Ameen, Y.M. El-Batawy, A.A. Abouelsaood, A theoretical study of light absorption in self assembled quantum dots. Opt. Photon. J. 03, 243–247 (2013). https://doi.org/10.4236/opj.2013.32B057

    Article  ADS  Google Scholar 

  18. Y. Okada, N.J. Ekins-Daukes, T. Kita, R. Tamaki, M. Yoshida, A. Pusch, O. Hess, C.C. Phillips, D.J. Farrell, K. Yoshida, N. Ahsan, Y. Shoji, T. Sogabe, J.-F. Guillemoles, Intermediate band solar cells: Recent progress and future directions. Appl. Phys. Rev. 2, 021302 (2015). https://doi.org/10.1063/1.4916561

    Article  ADS  Google Scholar 

  19. M. Nolan, M. Legesse, G. Fagas, Surface orientation effects in crystalline–amorphous silicon interfaces. Phys. Chem. Chem. Phys. 14, 15173 (2012). https://doi.org/10.1039/c2cp42679j

    Article  Google Scholar 

  20. T. Hwang, W. Lin, W. Wang, W. Wang, Numerical simulation of three dimensional pyramid quantum dot 196, 208–232 (2004). https://doi.org/10.1016/j.jcp.2003.10.026

    Article  Google Scholar 

  21. M. Sabaeian, M. Shahzadeh, Self-assembled strained pyramid-shaped InAs/GaAs quantum dots: the effects of wetting layer thickness on discrete and quasi-continuum levels. Phys. E Low Dimens. Syst. Nanostructss 61, 62–68 (2014). https://doi.org/10.1016/j.physe.2014.03.015

    Article  ADS  Google Scholar 

  22. R. Khordad, H. Bahramiyan, Impurity position effect on optical properties of various quantum dots. Phys. E Low Dimens. Syst. Nanostruct. 66, 107–115 (2015). https://doi.org/10.1016/j.physe.2014.09.021

    Article  ADS  Google Scholar 

  23. L. Cuadra, A. Marti, A. Luque, Influence of the overlap between the absorption coefficients on the efficiency of the intermediate band solar cell. IEEE Trans. Electron Devices. 51, 1002–1007 (2004). https://doi.org/10.1109/TED.2004.828161

    Article  ADS  Google Scholar 

  24. M.-Y. Lee, Y.-C. Tsai, Y. Li, S. Samukawa (2015) Electronic structure dependence on the density, size and shape of Ge/Si quantum dots array. in 2015 International Workshop on Computational Electronics (IEEE) https://doi.org/10.1109/IWCE.2015.7301970

  25. M.Y. Lee, Y.C. Tsai, Y. Li, S. Samukawa, Numerical simulation of physical and electrical characteristics of Ge/Si quantum dots based intermediate band solar cell, in 16th IEEE 16th International Conference on Nanotechnology—IEEE NANO 2016. (2016) pp 361–364. https://doi.org/10.1109/NANO.2016.7751551

  26. H. El Ghazi, Numerical investigation of one-intermediate band InN/GaN QW solar cell under electric field, impurity and size effects. Phys. B Condens. Matter. 602, 412427 (2021). https://doi.org/10.1016/j.physb.2020.412427

    Article  Google Scholar 

  27. L. Cuadra, A. Martí, A. Luque, Influence of the overlap between the absorption coefficients on the efficiency of the intermediate band solar cell. IEEE Trans. Electron Devices 51, 1002–1007 (2004). https://doi.org/10.1109/TED.2004.828161

    Article  ADS  Google Scholar 

  28. M.-Y. Lee, Y. Li, S. Samukawa, Miniband calculation of 3-D nanostructure array for solar cell applications. IEEE Trans. Electron Devices. 62, 3709–3714 (2015). https://doi.org/10.1109/TED.2015.2474161

    Article  ADS  Google Scholar 

  29. S.E. Jenks, Quantum dot intermediate band solar cells: design criteria and optimal materials (2012)

  30. J. Nelson, The Physics of Solar Cells, Published by Imperial College Press and Distributed by World Scientific Publishing CO., (2003) https://doi.org/10.1142/p276

  31. S.L. Chuang, Physics of Optoelectronic Devices (Wiley, Newyork, 1995)

    Google Scholar 

  32. L.R.C. Fonseca, J.L. Jimenez, J.P. Leburton, R.M. Martin, Self-consistent calculation of the electronic structure and electron-electron interaction in self-assembled InAs-GaAs quantum dot structures. Phys. Rev. B. 57, 4017–4026 (1998). https://doi.org/10.1103/PhysRevB.57.4017

    Article  ADS  Google Scholar 

  33. C. Pryor, Geometry and material parameter dependence of InAs/GaAs quantum dot electronic structure. Phys. Rev. B Condens. Matter Mater. Phys. 60, 2869–2874 (1999). https://doi.org/10.1103/PhysRevB.60.2869

    Article  ADS  Google Scholar 

  34. M. Jaouane, A. Sali, A. Ezzarfi, A. Fakkahi, R. Arraoui, Study of hydrostatic pressure, electric and magnetic fields effects on the donor binding energy in multilayer cylindrical quantum dots. Phys. E Low Dimens. Syst. Nanostruct 127, 114543 (2021). https://doi.org/10.1016/j.physe.2020.114543

    Article  Google Scholar 

  35. K. Sakamoto, Y. Kondo, K. Uchida, K. Yamaguchi, Quantum-dot density dependence of power conversion efficiency of intermediate-band solar cells. J. Appl. Phys. (2012). https://doi.org/10.1063/1.4771925

    Article  Google Scholar 

  36. A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui, Hydrostatic pressure, temperature, and electric field effects on the hydrogenic impurity binding energy in a multilayered spherical quantum dot. Appl. Phys. A. 127, 908 (2021). https://doi.org/10.1007/s00339-021-05055-x

    Article  ADS  Google Scholar 

  37. A. Martı́, L. Cuadra, A. Luque, Design constraints of the quantum-dot intermediate band solar cell. Phys. E Low-Dimens Syst. Nanostruct. 14, 150–157 (2002). https://doi.org/10.1016/S1386-9477(02)00368-5

    Article  ADS  Google Scholar 

  38. H. Abboudi, H. El Ghazi, A. Jorio, I. Zorkani, Impurity-related photovoltaic efficiency of (In, Ga)N/GaN quantum well-single intermediate band solar cell considering heavy hole impact. Superlattices Microstruct. 150, 106756 (2021). https://doi.org/10.1016/j.spmi.2020.106756

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Centre for Scientific and Technical Research (NCSTR) in Morocco.

Author information

Authors and Affiliations

Authors

Contributions

M. Jaouane, F. Ungan and A. Sali contributed to conceptualization, acquisition of data, formal analysis, drafting the manuscript, revising the manuscript critically for important intellectual content, approval of the version of the manuscript to be published; M. Jaouane, A. Fakkahi, A. Ed-Dahmouny, and A. Sali contributed to conceptualization, acquisition of data, formal analysis, drafting the manuscript, revising the manuscript critically for important intellectual content, approval of the version of the manuscript to be published; M. Jaouane, A. Turker Tuzemen, R. Arraoui and F. Ungan contributed to conceptualization, formal analysis, approval of the version of the manuscript to be published.

Corresponding author

Correspondence to M. Jaouane.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaouane, M., Fakkahi, A., Ed-Dahmouny, A. et al. Modeling and simulation of the influence of quantum dots density on solar cell properties. Eur. Phys. J. Plus 138, 148 (2023). https://doi.org/10.1140/epjp/s13360-023-03736-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03736-5

Navigation