Skip to main content
Log in

Onset of LTNE anisotropic porous convection: effect of asymmetric temperature boundary conditions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The onset of buoyancy-driven convection in a fluid-saturated anisotropic porous layer is studied by employing a local thermal non-equilibrium (LTNE) model. The porous layer is assumed to be bounded by impermeable boundaries with isoflux and isothermal conditions prescribed at the lower and upper boundaries, respectively. The anisotropy in permeability as well as fluid and solid thermal conductivities is considered. The linear instability analysis has been performed, and the eigenvalue problem is constituted using the procedure of normal mode analysis. The threshold values of the Darcy–Rayleigh number and the wave number for the onset of convection are extracted numerically using the shooting method. Increase in the mechanical anisotropy parameter and decrease in the thermal anisotropy parameters, scaled inter-phase heat transfer coefficient and the ratio of porosity-modified conductivities encourage a destabilizing influence on the onset of convection. For lower isoflux and upper isothermal boundaries case, small temperature differences are found to be sufficient to trigger the convective instability when compared to both boundaries isothermal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

No data were associated in the manuscript.

References

  1. A.V. Kuznetsov, Thermal nonequilibrium forced convection in porous media, in Transport Phenomena in Porous Media. ed. by D.B. Ingham, I. Pop (Pergamon, Oxford, 1998), pp.103–129

    Chapter  Google Scholar 

  2. D.A.S. Rees, I. Pop, Local thermal non-equilibrium in porous medium convection, in Transport Phenomena in Porous Media III. ed. by D.B. Ingham, I. Pop (Pergamon, Oxford, 2005), pp.147–173

    Chapter  Google Scholar 

  3. L. Virto, M. Carbonell, R. Castilla, P.J. Gamez-Montero, Heating of saturated porous media in practice: several causes of local thermal non-equilibrium. Int. J. Heat Mass Transf. 52, 5412–5422 (2009)

    Article  MATH  Google Scholar 

  4. B. Straughan, Porous convection with local thermal non-equilibrium temperatures and with Cattaneo effects in the solid. Proc. R. Soc. A 469, 20130187 (2013)

    Article  ADS  MATH  Google Scholar 

  5. N. Banu, D.A.S. Rees, Onset of Darcy–Bénard convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 45, 2221–2228 (2002)

    Article  MATH  Google Scholar 

  6. A. Postelnicu, D.A.S. Rees, The onset of Darcy–Brinkman convection in a porous medium using a thermal non-equilibrium model. Part 1: stress-free boundaries. Int. J. Energy Res. 27, 961–973 (2003)

    Article  Google Scholar 

  7. M.S. Malashetty, I.S. Shivakumara, K. Sridhar, The onset of Lapwood-Brinkman convection using a thermal non-equilibrium model. Int. J. Heat Mass Transf. 48, 1155–1163 (2005)

    Article  MATH  Google Scholar 

  8. A. Postelnicu, The onset of a Darcy–Brinkman convection using a thermal nonequilibrium model. Part II. Int. J. Therm. Sci. 47, 1587–1594 (2008)

    Article  Google Scholar 

  9. B. Straughan, Global non-linear stability in porous convection with a thermal non-equilibrium model. Proc. R. Soc. Lond. 462, 409–418 (2006)

    ADS  MATH  Google Scholar 

  10. A. Barletta, D.A.S. Rees, Local thermal non-equilibrium effects in the Darcy–Bénard instability with isoflux boundary conditions. Int. J. Heat Mass Transf. 55, 384–394 (2012)

    Article  MATH  Google Scholar 

  11. M. Celli, A. Barletta, L. Storesletten, Local thermal non-equilibrium effects in the Darcy–Bénard instability of a porous layer heated from below by a uniform flux. Int. J. Heat Mass Transf. 67, 902–912 (2013)

    Article  Google Scholar 

  12. A. Barletta, M. Celli, H. Lagziri, Instability of a horizontal porous layer with local thermal non-equilibrium: effects of free surface and convective boundary conditions. Int. J. Heat Mass Transf. 89, 75–89 (2015)

    Article  Google Scholar 

  13. B. Straughan, Convection with Local Thermal Nonequilibrium and Microfluidic Effects (Germany, Springer, Heidelberg, 2015)

    Book  MATH  Google Scholar 

  14. D.A. Nield, A. Bejan, Convection in Porous Media, 5th edn. (Springer, New York, 2017)

    Book  MATH  Google Scholar 

  15. H. Lagziri, M. Bezzazi, Robin boundary effects in the Darcy–Rayleigh problem with local thermal non-equilibrium model. Transp. Porous Med. 129, 701–720 (2019)

    Article  Google Scholar 

  16. R. McKibbin, Thermal convection in layered and anisotropic porous media: a review, in Convective Flows in Porous Media. ed. by R.A. Wooding, I. White (Department of Scientific and Industrial Research, Wellington, 1985), pp.113–127

    Google Scholar 

  17. R. McKibbin, Convection and heat transfer in layered and anisotropic porous media, in Heat and Mass Transfer in Porous Med. ed. by M. Quintard, M. Todorovic (Elsevier, Amsterdam, 1992), pp.327–336

    Google Scholar 

  18. L. Storesletten, Effects of anisotropy on convective flow through porous media, in Transport Phenomena in Porous Media. ed. by D.B. Ingham, I. Pop (Pergamon Press, Oxford, 1998), pp.261–283

    Chapter  Google Scholar 

  19. L. Storesletten, Effects of anisotropy on convection in horizontal and inclined porous layers, in Emerging Technologies and Techniques in Porous Media. ed. by D.B. Ingham et al. (Kluwer Academic Publishers, Amsterdam, 2004), pp.285–306

    Chapter  MATH  Google Scholar 

  20. F. Capone, M. Gentile, A.A. Hill, Penetrative convection via internal heating in anisotropic porous media. Mech. Res. Commun. 37, 441–444 (2010). https://doi.org/10.1016/j.mechrescom.2010.06.005

    Article  MATH  Google Scholar 

  21. F. Capone, M. Gentile, A.A. Hill, Double diffusive penetrative convection simulated via internal heating in an anisotropic porous layer with throughflow. Int. J. Heat Mass Transf. 54, 1622–1626 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.020

    Article  MATH  Google Scholar 

  22. F. Capone, M. Gentile, A.A. Hill, Penetrative convection in an anisotropic porous medium with variable permeability. Acta Mech. 216, 49–58 (2011). https://doi.org/10.1007/s00707-010-0353-2

    Article  MATH  Google Scholar 

  23. A.A. Hill, M.R. Morad, Convective stability of carbon sequestration in anisotropic porous media. Proc. R. Soc. A 470, 20140373 (2014). https://doi.org/10.1098/rspa.2014.0373

    Article  ADS  Google Scholar 

  24. B. Straughan, Horizontally isotropic bidispersive thermal convection. Proc. R. Soc. Lond. A 474, 20180018 (2018)

    ADS  MATH  Google Scholar 

  25. M.S. Malashetty, I.S. Shivakumara, K. Sridhar, The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model. Trans. Porous Med. 60, 199–215 (2005)

    Article  Google Scholar 

  26. S. Govender, P. Vadasz, The effect of mechanical and thermal anisotropy on the stability of gravity driven convection in rotating porous media in the presence of thermal non-equilibrium. Transp. Porous Med. 69, 55–66 (2007)

    Article  Google Scholar 

  27. I.S. Shivakumara, J. Lee, A.L. Mamatha, M. Ravisha, Boundary and thermal non-equilibrium effects on convective instability in an anisotropic porous layer. J. Mech. Sci. Technol. 25(4), 911–921 (2011)

    Article  Google Scholar 

  28. M. Hema, I.S. Shivakumara, M. Ravisha, Cattaneo-LTNE effects on the stability of brinkman convection in an anisotropic porous layer. Int. J. Appl. Comput. Math. 7, 38 (2021)

    Article  MATH  Google Scholar 

  29. F. Capone, M. Gentile, Sharp stability results in LTNE rotating anisotropic porous layer. Int. J. Therm. Sci. 134, 661–664 (2018)

    Article  Google Scholar 

  30. F. Capone, M. Gentile, J.A. Gianfrani, Optimal stability thresholds in rotating fully anisotropic porous medium with LTNE. Transp. Porous Med. 139, 185–201 (2021)

    Article  Google Scholar 

  31. K. Yang, K. Vafai, Analysis of temperature gradient bifurcation in porous media—an exact solution. Int. J. Heat Mass Transf. 53, 4316–4325 (2010)

    Article  MATH  Google Scholar 

  32. G. Neale, Degrees of anisotropy for fluid flow and diffusion (electrical conduction) through anisotropic porous media. Am. Inst. Chem. Eng. J. 23, 56–62 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ravisha.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shyabal, S., Ravisha, M., Hanumagowda, B.N. et al. Onset of LTNE anisotropic porous convection: effect of asymmetric temperature boundary conditions. Eur. Phys. J. Plus 138, 106 (2023). https://doi.org/10.1140/epjp/s13360-023-03717-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03717-8

Navigation