Skip to main content
Log in

Speed of sound in QCD matter at finite temperature and density

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The speed of sound in QCD matter at finite temperature and density is investigated within the Polyakov loop improved Nambu–Jona-Lasinio model. The spinodal structure associated with the first-order chiral phase transition is considered to describe the continuous variation of the speed of sound. The behaviors of the squared sound speed in different phases, including the stable, metastable and unstable phases, are derived. The relation between speed of sound and QCD phase transitions is systematically explored. In particular, the boundary of vanishing sound velocity is derived in the temperature-density phase diagram, and the region where the sound wave equation being broken is pointed out. Some interesting features of speed of sound under different definitions are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. H.C. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen 106, 192301 (2011)

  2. H.C. Song, S.A. Bass, U. Heinz, Phys. Rev. C 83, 024912 (2011)

    Article  ADS  Google Scholar 

  3. P. Deb, G.P. Kadam, H. Mishra, Phys. Rev. D 94, 094002 (2016)

    Article  ADS  Google Scholar 

  4. R. Campanini, G. Ferri, Phys. Lett. B 703, 237 (2011)

    Article  ADS  Google Scholar 

  5. F.G. Gardim, G. Giacalone, M. Luzum, J.Y. Ollitrault, Nat. Phys. 16, 615 (2020)

    Article  Google Scholar 

  6. D. Sahu, S. Tripathy, R. Sahoo, A.R. Dash, Eur. Phys. J. A 56, 187 (2021)

    Article  ADS  Google Scholar 

  7. D. Biswas, K. Deka, A. Jaiswal, S. Roy, Phys. Rev. C 102, 014912 (2020)

    Article  ADS  Google Scholar 

  8. A. Sorensen, D. Oliinychenko, V. Koch, L. McLerran, Phys. Rev. Lett. 127, 042303 (2021)

    Article  ADS  Google Scholar 

  9. B. Reed, C.J. Horowitz, Phys. Rev. C 101, 045803 (2020)

    Article  ADS  Google Scholar 

  10. A. Kanakis-Pegios, P.S. Koliogiannis, C.C. Moustakidis, Phys. Rev. C 102, 055801 (2020)

    Article  ADS  Google Scholar 

  11. S. Han, M. Prakash, Astrophys. J. 899, 164 (2020)

    Article  ADS  Google Scholar 

  12. I. Tews, J. Carlson, S. Gandolfi, S. Reddy, Astrophys. J. 860, 149 (2018)

    Article  ADS  Google Scholar 

  13. S.K. Greif, G. Raaijmakers, K. Hebeler, A. Schwenk, A.L. Watts, Mon. Not. R. Astron. Soc. 485, 5363 (2019)

    Article  ADS  Google Scholar 

  14. M.M. Forbes, S. Bose, S. Reddy, D. Zhou, A. Mukherjee, S. De, Phys. Rev. D 100, 083010 (2019)

    Article  ADS  Google Scholar 

  15. C. Drischler, S. Han, J.M. Lattimer, M. Prakash, S. Reddy, T. Zhao, Phys. Rev. C 103, 045808 (2021)

    Article  ADS  Google Scholar 

  16. R. Essick, I. Tews, P. Landry, S. Reddy, D.E. Holz, Phys. Rev. C 102, 055803 (2020)

    Article  ADS  Google Scholar 

  17. S. Han, M.A.A. Mamun, S. Lalit, C. Constantinou, M. Prakash, Phys. Rev. D 100, 103022 (2019)

    Article  ADS  Google Scholar 

  18. T. Kojo, AAPPS Bull. 31, 11 (2021)

    Article  Google Scholar 

  19. P. Jaikumar, A. Semposki, M. Prakash, C. Constantinou, Phys. Rev. D 103, 123009 (2021)

    Article  ADS  Google Scholar 

  20. O. Philipsen, Prog. Part. Nucl. Phys. 70, 55 (2013)

    Article  ADS  Google Scholar 

  21. S. Borsányi, Z. Fodor, J.N. Guenther, R. Kara, S.D. Katz, P. Parotto, A. Pasztor, C. Ratti, K.K. Szabo, Phys. Rev. Lett. 125, 052001 (2020)

    Article  ADS  Google Scholar 

  22. Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz, K.K. Szabo, Nature (London) 443, 675 (2006)

    Article  ADS  Google Scholar 

  23. S. Borsányi, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, K.K. Sabzó, Phys. Lett. B 730, 99 (2014)

    Article  ADS  Google Scholar 

  24. A. Bazavov et al., hotQCD collaboration. Phys. Rev. D. 90, 094503 (2014)

    Article  ADS  Google Scholar 

  25. M. Motta, R. Stiele, W.M. Alberico, A. Beraudo, Eur. Phys. J. C 80, 770 (2020)

    Article  ADS  Google Scholar 

  26. S.K. Ghosh, T.K. Mukherjee, M.G. Mustafa, R. Ray, Phys. Rev. D 73, 114007 (2006)

    Article  ADS  Google Scholar 

  27. R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin, H. Berrehrah, Phys. Rev. C 88, 045204 (2013)

    Article  ADS  Google Scholar 

  28. K. Saha, S. Ghosh, S. Upadhaya, S. Maity, Phys. Rev. D 97, 116020 (2018)

    Article  ADS  Google Scholar 

  29. Y.P. Zhao, Phys. Rev. D 101, 096006 (2020)

    Article  ADS  Google Scholar 

  30. B.J. Schaefer, M. Wagner, J. Wambach, Phys. Rev. D 81, 074013 (2010)

    Article  ADS  Google Scholar 

  31. A. Abhishek, H. Mishra, S. Ghosh, Phys. Rev. D 97, 014005 (2018)

    Article  ADS  Google Scholar 

  32. R. Venugopalan, M. Prakash, Nucl. Phys. A 546, 718 (1992)

    Article  ADS  Google Scholar 

  33. M. Bluhm, P. Alba, W. Alberico, A. Beraudo, C. Ratti, Nucl. Phys. A 929, 157 (2014)

    Article  ADS  Google Scholar 

  34. Z.V. Khaidukov, M.S. Lukashov, Y.A. Simonov, Phys. Rev. D 98, 074031 (2018)

    Article  ADS  Google Scholar 

  35. Z.V. Khaidukov, Y.A. Simonov, Phys. Rev. D 100, 076009 (2019)

    Article  ADS  Google Scholar 

  36. V. Mykhaylova, C. Sasaki, Phys. Rev. D 103, 014007 (2021)

    Article  ADS  Google Scholar 

  37. W.B. He, G.Y. Shao, X.Y. Gao, X.R. Yang, C.L. Xie, Phys. Rev. D 105, 094024 (2022)

    Article  ADS  Google Scholar 

  38. I.N. Mishustin, Phys. Rev. Lett. 82, 4779 (1999)

    Article  ADS  Google Scholar 

  39. J. Randrup, Phys. Rev. Lett. 92, 122301 (2004)

    Article  ADS  Google Scholar 

  40. V. Koch, A. Majumder, J. Randrup, Phys. Rev. C 72, 064903 (2005)

    Article  ADS  Google Scholar 

  41. C. Sasaki, B. Friman, K. Redlich, Phys. Rev. Lett. 99, 232301 (2007)

    Article  ADS  Google Scholar 

  42. C. Sasaki, B. Friman, K. Redlich, Phys. Rev. D 77, 034024 (2008)

    Article  ADS  Google Scholar 

  43. J. Randrup, Phys. Rev. C 79, 054911 (2009)

    Article  ADS  Google Scholar 

  44. J. Randrup, Phys. Rev. C 82, 034902 (2010)

    Article  ADS  Google Scholar 

  45. J. Steinheimer, J. Randrup, Phys. Rev. Lett. 109, 212301 (2012)

    Article  ADS  Google Scholar 

  46. J. Steinheimer, J. Randrup, Eur. Phys. J. A 52, 239 (2016)

    Article  ADS  Google Scholar 

  47. F. Li, C.M. Ko, Phys. Rev. C 93, 035205 (2016)

    Article  ADS  Google Scholar 

  48. J. Steinheimer, V. Koch, Phys. Rev. C 96, 034907 (2017)

    Article  ADS  Google Scholar 

  49. G.Y. Shao, X.Y. Gao, W.B. He, Eur. Phys. J. A 56, 115 (2020)

    Article  ADS  Google Scholar 

  50. M. Ahmadvand, K. Bitaghsir Fadafan, Phys. Lett. B 779, 1 (2018)

    Article  ADS  Google Scholar 

  51. T.V.I. Tenkanen, J. van de Vis, J. High Energy Phys. 2022, 302 (2022)

    Article  Google Scholar 

  52. S. Rößner, C. Ratti, W. Weise, Phys. Rev. D 75, 034007 (2007)

    Article  ADS  Google Scholar 

  53. P. Rehberg, S.P. Klevansky, J. Hüfner, Phys. Rev. C 53, 410 (1996)

    Article  ADS  Google Scholar 

  54. P. Costa, M.C. Ruivo, C.A. de Sousa, H. Hansen, Symmetry 2, 1338 (2010)

    Article  ADS  Google Scholar 

  55. G.Y. Shao, Z.D. Tang, X.Y. Gao, W.B. He, Eur. Phys. J. C 78, 138 (2018)

    Article  ADS  Google Scholar 

  56. P. Chomaz, M. Colonna, J. Randrup, Phys. Rep. 389, 263 (2004)

    Article  ADS  Google Scholar 

  57. G.Y. Shao, X.Y. Gao, W.B. He, Phys. Rev. D 101, 074029 (2020)

    Article  ADS  Google Scholar 

  58. G.Y. Shao, M. Colonna, M. Di Toro, Y.X. Liu, B. Liu, Phys. Rev. D 87, 096012 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 11875213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-yun Shao.

Appendix: Derivations of the formulae of speed of sound under different definitions in the temperature and density space

Appendix: Derivations of the formulae of speed of sound under different definitions in the temperature and density space

The general definition of speed of sound is

$$\begin{aligned} c_{X}^2=\left( \frac{\partial p}{\partial \epsilon }\right) _{X}, \end{aligned}$$
(20)

where X is a physics quantum fixed in the calculation of sound speed. In practice, the squared speed of sound \(c^2_{X}\) \((X=s/\rho _B, s,\rho _B, T, \mu _B)\) under different conditions are taken in dealing with different physics problems. With the basic definitions of speed of sound, calculation can only be done along some special paths.

To calculate the speed of sound under different definitions in the whole \(T-\rho _B\) space, it is necessary to derive the corresponding formulae in terms of temperature and density. Using the Jacobian formula in thermodynamics, we can derive

$$\begin{aligned} c_{X}^{2}\left( T, \rho _{B}\right)= & {} \left( \frac{\partial p}{\partial \epsilon }\right) _{X}=\frac{\partial (p, X)}{\partial (\epsilon , X)}=\frac{\frac{\partial (p, X)}{\partial \left( T, \rho _{B}\right) }}{\frac{\partial (\epsilon , X)}{\partial \left( T, \rho _{B}\right) }} \nonumber \\= & {} \frac{\left( \frac{\partial p}{\partial T}\right) _{\rho _{B}}\left( \frac{\partial X}{\partial \rho _{B}}\right) _{T}-\left( \frac{\partial p}{\partial \rho _{B}}\right) _{T}\left( \frac{\partial X}{\partial T}\right) _{\rho _{B}}}{\left( \frac{\partial \epsilon }{\partial T}\right) _{\rho _{B}}\left( \frac{\partial X}{\partial \rho _{B}}\right) _{T}-\left( \frac{\partial \epsilon }{\partial \rho _{B}}\right) _{T}\left( \frac{\partial X}{\partial T}\right) _{\rho _{B}}} \end{aligned}$$
(21)

According to the thermodynamic characteristic function in the giant canonical ensemble, it is convenient to get the following relations for isospin symmetric matter

$$\begin{aligned} \left( \frac{\partial p}{\partial T}\right) _{\rho _{B}}=s+\rho _{B}\left( \frac{\partial \mu _{B}}{\partial T}\right) _{\rho _{B}}, \end{aligned}$$
(22)
$$\begin{aligned} \left( \frac{\partial p}{\partial \rho _{B}}\right) _{T}=\rho _{B}\left( \frac{\partial \mu _{B}}{\partial \rho _{B}}\right) _{T}, \end{aligned}$$
(23)
$$\begin{aligned} \left( \frac{\partial \epsilon }{\partial T}\right) _{\rho _{B}}=T\left( \frac{\partial s}{\partial T}\right) _{\rho _{B}}, \end{aligned}$$
(24)
$$\begin{aligned} \left( \frac{\partial \epsilon }{\partial \rho _{B}}\right) _{T}=T\left( \frac{\partial s}{\partial \rho _{B}}\right) _{T}+\mu _{B}, \end{aligned}$$
(25)
$$\begin{aligned} \left( \frac{\partial {(s/\rho _B)}}{\partial T}\right) _{\rho _B}=\frac{1}{\rho _{B}}\left( \frac{\partial s}{\partial T}\right) _{\rho _{B}}, \end{aligned}$$
(26)

and

$$\begin{aligned} \left( \frac{\partial { (s/\rho _B)}}{\partial \rho _{B}}\right) _{T}=\frac{1}{\rho _{B}}\left( \frac{\partial s}{\partial \rho _{B}}\right) _{T}-\frac{s}{\rho _{B}^{2}} \end{aligned}$$
(27)

For the different constraint conditions, \(X=s/\rho _B, s,\rho _B, T, \mu _B\), we can derived the corresponding formulae of speed of sound as follows

$$\begin{aligned} \!c^2_{s/\rho _B}\!=\!\frac{\!s^{2}\!+\!\rho _{B}^{2}\!\left[ \!\left( \frac{\!\partial \mu _{B}}{\!\partial \rho _{B}}\!\right) _{\!T}\!\left( \frac{\partial s}{\!\partial T}\!\right) _{\!\rho _{\!B}}\!-\!\left( \frac{\partial \mu _{\!B}}{\partial T}\!\right) _{\!\rho _{\!B}}\!\left( \frac{\partial s}{\partial \rho _{\!B}}\!\right) _{\!T}\!\right] \!+\!s \rho _{\!B}\!\left[ \!\left( \frac{\partial \mu _{\!B}}{\partial T}\!\right) _{\!\rho _{\!B}}\!-\!\left( \frac{\partial s}{\partial \rho _{\!B}}\!\right) _{\!T}\right] }{\left( T s+\mu _{B} \rho _{B}\right) \left( \frac{\partial s}{\partial T}\right) _{\rho _{B}}}, \end{aligned}$$
(28)
$$\begin{aligned} c_{s}^{2}=\frac{\rho _{B}\left[ \left( \frac{\partial s}{\partial T}\right) _{\rho _{B}}\left( \frac{\partial \mu _{B}}{\partial \rho _{B}}\right) _{T}-\left( \frac{\partial s}{\partial \rho _{B}}\right) _{T}\left( \frac{\partial \mu _{B}}{\partial T}\right) _{\rho _{B}}\right] -s\left( \frac{\partial s}{\partial \rho _{B}}\right) _{T}}{\mu _{B}\left( \frac{\partial s}{\partial T}\right) _{\rho _{B}}}, \end{aligned}$$
(29)
$$\begin{aligned} c_{\rho _{B}}^{2}=\frac{s+\rho _{B}\left( \frac{\partial \mu _{B}}{\partial T}\right) _{\rho _{B}}}{T\left( \frac{\partial s}{\partial T}\right) _{\rho _{B}}}, \end{aligned}$$
(30)
$$\begin{aligned} c_{T}^{2}=\frac{\rho _{B}\left( \frac{\partial \mu _{B}}{\partial \rho _{B}}\right) _{T}}{T\left( \frac{\partial s}{\partial \rho _{B}}\right) _{T}+\mu _{B}}, \end{aligned}$$
(31)

and

$$\begin{aligned} c_{\mu _{B}}^{2}=\frac{s\left( \frac{\partial \mu _{B}}{\partial \rho _{B}}\right) _{T}}{T\left[ \left( \frac{\partial s}{\partial T}\right) _{\rho _{B}}\left( \frac{\partial \mu _{B}}{\partial \rho _{B}}\right) _{T}-\left( \frac{\partial \mu _{B}}{\partial T}\right) _{\rho _{B}}\left( \frac{\partial s}{\partial \rho _{B}}\right) _{T}\right] -\mu _{B}\left( \frac{\partial \mu _{B}}{\partial T}\right) _{\rho _{B}}}. \end{aligned}$$
(32)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Gy., Yang, Xr., Xie, Cl. et al. Speed of sound in QCD matter at finite temperature and density. Eur. Phys. J. Plus 138, 44 (2023). https://doi.org/10.1140/epjp/s13360-023-03696-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03696-w

Navigation