Skip to main content
Log in

Computational model of calcium dynamics-dependent dopamine regulation and dysregulation in a dopaminergic neuron cell

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Calcium (Ca2+) signaling is essential for regulating dopamine (DA) concentration levels in neurons. The alterations in the different mechanisms of [Ca2+] dynamics can cause the disturbances in the dopamine regulation in neuron cells. But, no attempt is reported on the spatiotemporal dependence of dopamine regulation on the [Ca2+] dynamics in neurons. A mathematical model is framed to explore the effects of alterations in different processes including source influx, ryanodine receptor, buffer process, serca pump, etc. on the spatiotemporal [Ca2+] and dopamine mechanisms in nerve cells. The Numerical findings have been acquired utilizing finite element techniques and the effects of dysregulation in diverse processes on the spatiotemporal [Ca2+] and dopamine mechanisms in dopaminergic neurons are analyzed. The outcomes provide the better understanding of the regulatory and dysregulatory processes, which can cause the alterations in the spatiotemporal [Ca2+] and dopamine dynamics leading to neuronal diseases such as Parkinson’s, attention deficit hyperactive disorder, depression, schizophrenia, etc. Thus, the present model gives novel information about the specific dysregulatory constitutive mechanisms of calcium and dopamine dynamics like source inflow, buffer, ryanodine receptor, and others, which are responsible for the elevated calcium and dopamine levels, consequently the death of dopaminergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. H. Yuan, J.C. Zheng, P. Liu, S.F. Zhang, J.Y. Xu, L.M. Bai, Pathogenesis of Parkinson’s disease: Oxidative stress, environmental impact factors and inflammatory processes. Neurosci. Bull. 23, 125–130 (2007). https://doi.org/10.1007/s12264-007-0018-x

    Article  Google Scholar 

  2. A.H. Stokes, T.G. Hastings, K.E. Vrana, Cytotoxic and genotoxic potential of dopamine. J. Neurosci. Res. 55, 659–665 (1999)

    Article  Google Scholar 

  3. P. Wellstead, M. Cloutier, Systems biology of parkinson’s disease. Syst. Biol. Park. Dis. (2012). https://doi.org/10.1007/978-1-4614-3411-5

    Article  Google Scholar 

  4. A. Atri, J. Amundson, D. Clapham, J. Sneyd, A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte. Biophys. J. 65, 1727–1739 (1993). https://doi.org/10.1016/S0006-3495(93)81191-3

    Article  Google Scholar 

  5. R. Llinas, The role of calcium in neuronal function. Neurosci. Fourth Study Progr. 2, 555–571 (1979)

    Google Scholar 

  6. A.L. Fogelson, R.S. Zucker, Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation. Biophys. J. 48, 1003–1017 (1985). https://doi.org/10.1016/S0006-3495(85)83863-7

    Article  Google Scholar 

  7. J. Wagner, J. Keizer, Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys. J. 67, 447–456 (1994). https://doi.org/10.1016/S0006-3495(94)80500-4

    Article  ADS  Google Scholar 

  8. G.D. Smith, J. Wagner, J. Keizer, Validity of the rapid buffering approximation near a point source of calcium ions. Biophys. J. 70, 2527–2539 (1996). https://doi.org/10.1016/S0006-3495(96)79824-7

    Article  ADS  Google Scholar 

  9. G.D. Smith, Analytical steady-state solution to the rapid buffering approximation near an open Ca2+ channel. Biophys. J. 71, 3064–3072 (1996). https://doi.org/10.1016/S0006-3495(96)79500-0

    Article  ADS  Google Scholar 

  10. A. Verkhratsky, The endoplasmic reticulum and neuronal calcium signalling. Cell Calcium 32, 393–404 (2002). https://doi.org/10.1016/S0143416002001896

    Article  Google Scholar 

  11. M. Falcke, Buffers and oscillations in intracellular Ca2+ dynamics. Biophys. J. 84, 28–41 (2003). https://doi.org/10.1016/S0006-3495(03)74830-9

    Article  ADS  Google Scholar 

  12. J. Sneyd, K. Tsaneva-Atanasova, J.I.E. Bruce, S.V. Straub, D.R. Giovannucci, D.I. Yule, A model of calcium waves in pancreatic and parotid acinar cells. Biophys. J. 85, 1392–1405 (2003). https://doi.org/10.1016/S0006-3495(03)74572-X

    Article  ADS  Google Scholar 

  13. M. Brini, T. Calì, D. Ottolini, E. Carafoli, Neuronal calcium signaling: Function and dysfunction. Cell. Mol. Life Sci. 71, 2787–2814 (2014). https://doi.org/10.1007/s00018-013-1550-7

    Article  Google Scholar 

  14. K.B. Pathak, N. Adlakha, Finite element model to study calcium signalling in cardiac myocytes involving pump, leak and excess buffer. J. Med. Imaging Heal. Inform. 5, 683–688 (2015). https://doi.org/10.1166/jmihi.2015.1443

    Article  Google Scholar 

  15. K. Pathak, N. Adlakha, Finite element model to study two dimensional unsteady state calcium distribution in cardiac myocytes, Alexandria. J. Med. 52, 261–268 (2016). https://doi.org/10.1016/j.ajme.2015.09.007

    Article  Google Scholar 

  16. N. Singh, N. Adlakha, A mathematical model for interdependent calcium and inositol 1,4,5-trisphosphate in cardiac myocyte. Netw. Model. Anal. Heal. Inform. Bioinf. (2019). https://doi.org/10.1007/s13721-019-0198-0

    Article  MATH  Google Scholar 

  17. N. Singh, N. Adlakha, Nonlinear dynamic modeling of 2-dimensional interdependent calcium and inositol 1,4,5-trisphosphate in cardiac myocyte. Math. Biol. Bioinforma. 14, 290–305 (2019). https://doi.org/10.17537/2019.14.290

    Article  Google Scholar 

  18. N. Singh, N. Adlakha, Three dimensional coupled reaction-diffusion modeling of calcium and inositol 1,4,5-trisphosphate dynamics in cardiomyocytes. RSC Adv. 9, 42459–42469 (2019). https://doi.org/10.1039/c9ra06929a

    Article  ADS  Google Scholar 

  19. S.G. Tewari, K.R. Pardasani, Modeling effect of sodium pump on calcium oscillations in neuron cells. J. Multiscale Model. 04, 1250010 (2012). https://doi.org/10.1142/s1756973712500102

    Article  MathSciNet  Google Scholar 

  20. V. Tewari, S. Tewari, K.R. Pardasani, A model to study the effect of excess buffers and Na+ ions on Ca2+ diffusion in neuron cell. World Acad. Sci. Eng. Technol. 76, 41–46 (2011). https://doi.org/10.5281/zenodo.1054988

    Article  Google Scholar 

  21. S.G. Tewari, K.R. Pardasani, Finite element model to study two dimensional unsteady state cytosolic calcium diffusion in presence of excess buffers. IAENG Int. J. Appl. Math. 40, 1–5 (2010)

    MathSciNet  MATH  Google Scholar 

  22. S. Tewari, K.R. Pardasani, Finite difference model to study the effects of Na+ influx on cytosolic Ca2+ diffusion. World Acad. Sci. Eng. Technol. 2, 670–675 (2008)

    Google Scholar 

  23. N. Manhas, J. Sneyd, K.R. Pardasani, Modelling the transition from simple to complex Ca2+oscillations in pancreatic acinar cells. J. Biosci. 39, 463–484 (2014). https://doi.org/10.1007/s12038-014-9430-3

    Article  Google Scholar 

  24. N. Manhas, K.R. Pardasani, Mathematical model to study IP3 Dynamics dependent calcium oscillations in pancreatic acinar cells. J. Med. Imag. Heal. Inform. 4, 874–880 (2014). https://doi.org/10.1166/jmihi.2014.1333

    Article  Google Scholar 

  25. N. Manhas, K.R. Pardasani, Modelling mechanism of calcium oscillations in pancreatic acinar cells. J. Bioenerg. Biomembr. 46, 403–420 (2014). https://doi.org/10.1007/s10863-014-9561-0

    Article  Google Scholar 

  26. Y.D. Jagtap, N. Adlakha, Simulation of buffered advection diffusion of calcium in a hepatocyte cell. Math. Biol. Bioinforma. 13, 609–619 (2018). https://doi.org/10.17537/2018.13.609

    Article  Google Scholar 

  27. Y. Jagtap, N. Adlakha, Finite volume simulation of two dimensional calcium dynamics in a hepatocyte cell involving buffers and fluxes. Commun. Math. Biol. Neurosci. 2018, 1–16 (2018). https://doi.org/10.28919/cmbn/3689

    Article  Google Scholar 

  28. Y. Jagtap, N. Adlakha, Numerical study of one-dimensional buffered advection–diffusion of calcium and IP 3 in a hepatocyte cell. Netw. Model. Anal. Heal. Inform. Bioinforma. 8, 1–9 (2019). https://doi.org/10.1007/s13721-019-0205-5

    Article  Google Scholar 

  29. S. Panday, K.R. Pardasani, Finite element model to study effect of advection diffusion and Na+/Ca2+ exchanger on Ca2+ distribution in oocytes. J. Med. Imag. Heal. Inform. 3, 374–379 (2013). https://doi.org/10.1166/jmihi.2013.1184

    Article  Google Scholar 

  30. P.A. Naik, K.R. Pardasani, One dimensional finite element model to study calcium distribution in oocytes in presence of VGCC, RyR and buffers. J. Med. Imaging Heal. Inform. 5, 471–476 (2015). https://doi.org/10.1166/jmihi.2015.1431

    Article  Google Scholar 

  31. P.A. Naik, K.R. Pardasani, Two dimensional finite element model to study calcium distribution in oocytes. J. Multiscale Model. 06, 1450002 (2015). https://doi.org/10.1142/s1756973714500024

    Article  ADS  MathSciNet  Google Scholar 

  32. P.A. Naik, K.R. Pardasani, Finite element model to study calcium distribution in oocytes involving voltage gated Ca2+ channel, ryanodine receptor and buffers, Alexandria. J. Med. 52, 43–49 (2016). https://doi.org/10.1016/j.ajme.2015.02.002

    Article  Google Scholar 

  33. P.A. Naik, K.R. Pardasani, 2D finite-element analysis of calcium distribution in oocytes. Netw. Model. Anal. Heal. Inform. Bioinforma. 7, 1–11 (2018). https://doi.org/10.1007/s13721-018-0172-2

    Article  Google Scholar 

  34. P.A. Naik, K.R. Pardasani, Three-dimensional finite element model to study effect of RyR calcium channel, ER leak and SERCA pump on calcium distribution in oocyte cell. Int. J. Comput. Methods. 16, 1–19 (2019). https://doi.org/10.1142/S0219876218500913

    Article  MathSciNet  MATH  Google Scholar 

  35. B.K. Jha, N. Adlakha, M.N. Mehta, Finite volume model to study the effect of buffer on cytosolic Ca2+ advection diffusion. World Acad. Sci. Eng. Technol. 51, 982–985 (2011)

    Google Scholar 

  36. B. Jha, N. Adlakha, M. Mehta, Solution of advection diffusion equation arising in cytosolic calcium concentration distribution. Int. J. Appl. Math Mech. 7: 72–79 (2011). http://ijamm.bc.cityu.edu.hk/ijamm/outbox/Y2011V7N6P72C98630924.pdf

  37. B.K. Jha, N. Adlakha, M.N. Mehta, Two-dimensional finite element model to study calcium distribution in astrocytes in presence of VGCC and excess buffer. Int. J. Model. Simulat. Sci. Comput. (2013). https://doi.org/10.1142/S1793962312500304

    Article  MATH  Google Scholar 

  38. B.K. Jha, N. Adlakha, M.N. Mehta, Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer. Int. J. Biomath. 7, 1–11 (2014). https://doi.org/10.1142/S1793524514500314

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Tripathi, N. Adlakha, Closed form solution to problem of calcium diffusion in cylindrical shaped neuron cell. World Acad. Sci. Eng. Technol. 80, 739–742 (2011)

    Google Scholar 

  40. A. Tripathi, N. Adlakha, Two dimensional coaxial circular elements in FEM to study calcium diffusion in neuron cells. Appl. Math. Sci. 6, 455–466 (2012)

    MATH  Google Scholar 

  41. A. Jha, N. Adlakha, Two-dimensional finite element model to study unsteady state Ca2+ diffusion in neuron involving ER LEAK and SERCA. Int. J. Biomath. (2015). https://doi.org/10.1142/S1793524515500023

    Article  MATH  Google Scholar 

  42. A. Jha, N. Adlakha, Analytical solution of two dimensional unsteady state problem of calcium diffusion in a neuron cell. J. Med. Imag. Heal. Inform. 4, 547–553 (2014). https://doi.org/10.1166/jmihi.2014.1282

    Article  Google Scholar 

  43. H. Bhardwaj, N. Adlakha, Radial basis function based differential quadrature approach to study reaction diffusion of Ca2+ in T Lymphocyte. Int. J. Computat. Methods. (2022). https://doi.org/10.1142/S0219876222500591

    Article  Google Scholar 

  44. A. Pawar, K. Raj Pardasani, Effects of disorders in interdependent calcium and IP3 dynamics on nitric oxide production in a neuron cell. Eur. Phys. J. Plus. 137, 543 (2022). https://doi.org/10.1140/EPJP/S13360-022-02743-2

    Article  Google Scholar 

  45. A. Pawar, K.R. Pardasani, Effect of disturbances in neuronal calcium and IP3 dynamics on β-amyloid production and degradation. Cogn. Neurodynamics 2022, 1–18 (2022). https://doi.org/10.1007/S11571-022-09815-0

    Article  Google Scholar 

  46. A. Pawar, K.R. Pardasani, Simulation of disturbances in interdependent calcium and β-amyloid dynamics in the nerve cell. Eur. Phys. J. Plus. 137, 1–23 (2022). https://doi.org/10.1140/EPJP/S13360-022-03164-X

    Article  Google Scholar 

  47. A. Pawar, K.R. Pardasani, Study of disorders in regulatory spatiotemporal neurodynamics of calcium and nitric oxide. Cogn. Neurodynamic. (2022). https://doi.org/10.1007/s11571-022-09902-2

    Article  Google Scholar 

  48. Y.X. Li, R. Bertram, J. Rinzwl, Modeling N-Methyl-D-Aspartate-induced bursting in dopamine neurons. Neuroscience. 71, 397–410 (1996)

    Article  Google Scholar 

  49. C.C. Canavier, Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: A computational approach. J. Comput. Neurosci. 6, 49–69 (1999). https://doi.org/10.1023/A:1008809000182

    Article  MATH  Google Scholar 

  50. B. Amini, J.W. Clark, C.C. Canavier, N. Orleans, Calcium dynamics underlying pacemaker-like and burst firing oscillations in midbrain dopaminergic neurons: A computational study. J. Neurophysiol. 82, 49–62 (2019)

    Google Scholar 

  51. G.W. Zamponi, J. Striessnig, A. Koschak, A.C. Dolphin, The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol. Rev. 67, 821–870 (2015). https://doi.org/10.1124/pr.114.009654

    Article  Google Scholar 

  52. M.E. Soden, G.L. Jones, C.A. Sanford, A.S. Chung, A.D. Güler, C. Chavkin, R. Luján, L.S. Zweifel, Disruption of dopamine neuron activity pattern regulation through selective expression of a human KCNN3 mutation. Neuron 80, 997–1009 (2013). https://doi.org/10.1016/j.neuron.2013.07.044

    Article  Google Scholar 

  53. L. Zhang, Y. Liu, X. Chen, Carbachol induces burst firing of dopamine cells in the ventral tegmental area by promoting calcium entry through L-type channels in the rat. J. Physiol. 568, 469–481 (2005). https://doi.org/10.1113/jphysiol.2005.094722

    Article  Google Scholar 

  54. A.A. Grace, B.S. Bunney, The control of firing pattern in nigral dopamine neurons: Burst firing. J. Neurosci. 4, 2877–2890 (1984). https://doi.org/10.1523/jneurosci.04-11-02877.1984

    Article  Google Scholar 

  55. L.A. Sombers, M. Beyene, R.M. Carelli, R.M. Wightman, Synaptic overflow of dopamine in the nucleus accumbens arises from neuronal activity in the ventral tegmental area. J. Neurosci. 29, 1735–1742 (2009). https://doi.org/10.1523/JNEUROSCI.5562-08.2009

    Article  Google Scholar 

  56. T. Nakano, T. Doi, J. Yoshimoto, K. Doya, A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity. PLoS Comput. Biol. (2010). https://doi.org/10.1371/journal.pcbi.1000670

    Article  MathSciNet  Google Scholar 

  57. M.D. Clinic, Ourette’s 345, 1184–1192 (2001)

    Google Scholar 

  58. E.V. Mosharov, K.E. Larsen, E. Kanter, K.A. Phillips, K. Wilson, Y. Schmitz, D.E. Krantz, K. Kobayashi, R.H. Edwards, D. Sulzer, Article interplay between cytosolic dopamine, calcium, and a-synuclein causes selective death of substantia Nigra neurons. Neuron 62, 218–229 (2009). https://doi.org/10.1016/j.neuron.2009.01.033

    Article  Google Scholar 

  59. T. Yamada, P.L. Mcgeer, K.G. Baimbridge, E.G. Mcgeer, Relative sparing in Parkinson‘s disease of substantia nigra dopamine neurons containing calbindin-D2sK. Brain Res. 526, 303–307 (1990)

    Article  Google Scholar 

  60. M.K. Sanghera, J. Zamora, D.C. German, Calbindin-D 28k-containing neurons in the human hypothalamus: relationship to dopaminergic neurons. Brain Res. 4, 375–381 (1995)

    Google Scholar 

  61. Y. Tabata, Y. Imaizumi, M. Sugawara, T. Andoh-Noda, S. Banno, M.C. Chai, T. Sone, K. Yamazaki, M. Ito, K. Tsukahara, H. Saya, N. Hattori, J. Kohyama, H. Okano, T-type calcium channels determine the vulnerability of dopaminergic neurons to mitochondrial stress in familial Parkinson disease. Stem. Cell Reports. 11, 1171–1184 (2018). https://doi.org/10.1016/j.stemcr.2018.09.006

    Article  Google Scholar 

  62. A. Mcmahon, B.S. Wong, A.M. Iacopino, M.C. Ng, S. Chi, D.C. German, Calbindin-D 28 k buffers intracellular calcium and promotes resistance to degeneration in PC12 cells. Mol. Brain Res. 54, 56–63 (1998)

    Article  Google Scholar 

  63. H. Joshi, B.K. Jha, Fractionally delineate the neuroprotective function of calbindin- D 28 k in Parkinson’s disease. Int. J. Biomath. 11, 1–19 (2018). https://doi.org/10.1142/S1793524518501036

    Article  MATH  Google Scholar 

  64. J. Wagner, C.F. Fall, F. Hong, C.E. Sims, N.L. Allbritton, R.A. Fontanilla, I.I. Moraru, L.M. Loew, R. Nuccitelli, A wave of IP3 production accompanies the fertilization Ca2+ wave in the egg of the frog, Xenopus laevis: Theoretical and experimental support. Cell Calcium 35, 433–447 (2004). https://doi.org/10.1016/j.ceca.2003.10.009

    Article  Google Scholar 

  65. D. Tello-Bravo, A mathematical model of dopamine neurotransmission. Gastron. Ecuatoriana y Tur. Local. 1, 5–24 (1967)

    Google Scholar 

  66. G. Dupont, S. Swillens, C. Clair, T. Tordjmann, L. Combettes, Hierarchical organization of calcium signals in hepatocytes: From experiments to models. Biochim. Biophys. Acta-Mol. Cell Res. 1498, 134–152 (2000). https://doi.org/10.1016/S0167-4889(00)00090-2

    Article  Google Scholar 

  67. S.H. Walters, I.M. Taylor, Z. Shu, A.C. Michael, A novel restricted diffusion model of evoked dopamine. ACS Chem. Neurosci. 5, 776–783 (2014). https://doi.org/10.1021/cn5000666

    Article  Google Scholar 

  68. S.A. Brown, F. Morgan, J. Watras, L.M. Loew, Analysis of phosphatidylinositol-4,5-bisphosphate signaling in cerebellar Purkinje spines. Biophys. J. 95, 1795–1812 (2008). https://doi.org/10.1529/biophysj.108.130195

    Article  ADS  Google Scholar 

  69. T. Öziş, E.N. Aksan, A. Özdeş, A finite element approach for solution of Burgers’ equation. Appl. Math. Comput. 139, 417–428 (2003). https://doi.org/10.1016/S0096-3003(02)00204-7

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Pawar.

Appendices

Appendix 1

Model equations description

For [Ca2+] and dopamine mechanisms, the shape functions for each element are expressed as:

$$ u^{(e)} \, = \, q_{1}^{(e)} \, + \, q_{2}^{(e)} \, x $$
(17)
$$ v^{(e)} \, = \, r_{1}^{(e)} \, + \, r_{2}^{(e)} \, x $$
(18)
$$ {\text{u}}^{{\text{(e)}}} {\text{ = S}}^{{\text{T}}} {\text{q}}^{{\text{(e)}}} {\text{, v}}^{{\text{(e)}}} {\text{ = S}}^{{\text{T}}} {\text{r}}^{{\text{(e)}}} $$
(19)
$$ S^{T} \, = \, [\begin{array}{*{20}c} 1 & x \\ \end{array} ], \, q^{{(e)^{T} }} \, = \, [\begin{array}{*{20}c} {q_{1}^{(e)} } & {q_{2}^{(e)} } \\ \end{array} ], \, r^{{(e)^{T} }} \, = \, [\begin{array}{*{20}c} {r_{1}^{(e)} } & {r_{2}^{(e)} } \\ \end{array} ] $$
(20)

The nodal conditions in Eq. (19) yields,

$$ \overline{u}^{(e)} \, = \, S^{(e)} q^{(e)} , \, \overline{v}^{(e)} \, = \, S^{(e)} r^{(e)} , $$
(21)

where

$$ \overline{u}^{(e)} = \left[ {\begin{array}{*{20}c} {u_{i} } \\ {u_{j} } \\ \end{array} } \right],\;\overline{v}^{(e)} = \left[ {\begin{array}{*{20}c} {v_{i} } \\ {v_{j} } \\ \end{array} } \right]\;\;{\text{and}}\;\;S^{(e)} = \left[ {\begin{array}{*{20}c} 1 & {x_{i} } \\ 1 & {x_{j} } \\ \end{array} } \right] $$
(22)

By Eq. (21), we have

$$ q^{(e)} \, = \, R^{(e)} \, \overline{u}^{(e)} , \, r^{(e)} \, = \, R^{(e)} \, \overline{v}^{(e)} $$
(23)

And

$$ R^{(e)} = S^{{(e)^{ - 1} }} $$
(24)

Adding \(q^{(e)}\) and \(r^{(e)}\) from Eq. (23) in (19) yields,

$$ u^{(e)} \, = \, S^{T} \, R^{(e)} \, \overline{u}^{(e)} , \, v^{(e)} \, = \, S^{T} \, R^{(e)} \, \overline{v}^{(e)} $$
(25)

For Eqs. (1 and 8), the discretized form is provided as,

The integrals \(I_{1}^{(e)}\) and \(I_{2}^{(e)}\) can be expressed as,

$$ I_{1}^{(e)} \, = \, I_{a1}^{(e)} - \, I_{b1}^{(e)} \, + \, I_{c1}^{(e)} \, - \, I_{{{\text{d}}1}}^{(e)} \, + \, I_{e1}^{(e)} \, + \, I_{f1}^{(e)} - \, I_{g1}^{(e)} - \, I_{h1}^{(e)} $$
(26)

where

$$ I_{{{\text{a1}}}}^{{\text{(e)}}}\,\, =\,\, \int\limits_{{x_{i} }}^{{x_{j} }} {\left\{ {\left( {\frac{{\partial {\text{u}}^{{\text{(e)}}} }}{{\partial {\text{x}}}}} \right)^{2} } \right\}{\text{d}}x} $$
(27)
$$ {\text{I}}_{{{\text{b1}}}}^{{\text{(e)}}} \,\,= \,\,\frac{{\text{d}}}{{{\text{dt}}}}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {\frac{{{\text{(u}}^{{\text{(e)}}} {)}}}{{{\text{D}}_{{{\text{Ca}}}} }}} \right]{\text{ dx}}} $$
(28)
$$ {\text{I}}_{{{\text{c1}}}}^{{\text{(e)}}} \,\, = \,\,\frac{{{\text{V}}_{{{\text{IPR}}}} }}{{{\text{D}}_{{{\text{ca}}}} {\text{F}}_{{\text{c}}} }}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {{\alpha u}^{{\text{(e)}}} + {\upgamma }} \right]{\text{ dx}}} $$
(29)
$$ I_{{{\text{d}}1}}^{(e)}\,\, =\,\, \frac{{V_{{{\text{SERCA}}}} }}{{D_{{{\text{ca}}}} F_{c} }}\int\limits_{{x_{i} }}^{{x_{j} }} {\left[ {\kappa u^{(e)} + \, \eta } \right]{\text{ d}}x} $$
(30)
$$ {\text{I}}_{{{\text{e1}}}}^{{\text{(e)}}} \,\,= \,\,\frac{{{\text{V}}_{{{\text{LEAK}}}} }}{{{\text{D}}_{{{\text{ca}}}} {\text{F}}_{{\text{c}}} }}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {{\text{[Ca}}^{{2 + }} {]}_{{{\text{ER}}}} {\text{ - u}}^{{\text{(e)}}} } \right]{\text{ dx}}} $$
(31)
$$ {\text{I}}_{{{\text{f1}}}}^{{\text{(e)}}} \,\,= \,\,\frac{{{\text{V}}_{{{\text{RyR}}}} {\text{P}}_{{0}} }}{{{\text{D}}_{{{\text{ca}}}} {\text{F}}_{{\text{c}}} }}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {{\text{[Ca}}^{{2 + }} {]}_{{{\text{ER}}}} {\text{ - u}}^{{\text{(e)}}} } \right]{\text{ dx}}} $$
(32)
$$ {\text{I}}_{{{\text{g1}}}}^{{\text{(e)}}} \,\, = \,\,\frac{{{\text{K}}^{ + } }}{{{\text{D}}_{{{\text{ca}}}} }}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {{\text{u}}^{{\text{(e)}}} {\text{ - [Ca}}^{{2 + }} ]_{\infty } } \right]{\text{ dx}}} $$
(33)
$$ {\text{I}}_{{{\text{h1}}}}^{{\text{(e)}}} \,\, =\,\, {\text{f}}^{{\text{(e)}}} \frac{{\upsigma }}{{{\text{D}}_{{{\text{ca}}}} }}_{{\text{ x = 0}}} $$
(34)

Now,

$$ {\rm I}_{2}^{\rm (e)} ={\rm I}_{\rm a2}^{\rm (e)} - {\rm I}_{\rm b2}^{\rm (e)} + {\rm I}_{\rm c2}^{\rm (e)} + {\rm I}_{\rm d2}^{\rm (e)} - {\rm I}_{\rm e2}^{\rm (e)} $$
(35)
$$ I_{{{\text{a2}}}}^{{\text{(e)}}} \,\,=\,\,\int\limits_{{x_{i} }}^{{x_{j} }} {\left\{ {\left( {\frac{{\partial v^{{\text{(e)}}} }}{\partial x}} \right)^{2} } \right\}{\text{ d}}x} $$
(36)
$$ I_{{{\text{b2}}}}^{{\text{(e)}}} \,\,= \,\,\frac{{\text{d}}}{{{\text{d}}t}}\int\limits_{{x_{i} }}^{{x_{j} }} {\left[ {\frac{{v^{(e)} }}{{{\text{D}}_{{{\text{DA}}}} }}} \right]{\text{ d}}x} $$
(37)
$$ {\text{I}}_{{{\text{c2}}}}^{{\text{(e)}}}\,\, = \,\,\frac{1}{{{\text{D}}_{{{\text{DA}}}} }}\int\limits_{{{\text{x}}_{{\text{i}}} }}^{{{\text{x}}_{{\text{j}}} }} {\left[ {[{\text{DA}}]_{{\text{P}}} {\text{f}}} \right]{\text{ dx}}} $$
(38)
$$ I_{{{\text{d2}}}}^{{\text{(e)}}} \,\,=\,\, \frac{{{\uppsi }{. }n_{{{\text{RRP}}}} {. }P_{{{\text{rel}}}} }}{{{\text{D}}_{{{\text{DA}}}} }}\int\limits_{{x_{i} }}^{{x_{j} }} {\left[ {\mu_{1} u^{(e)} + \mu_{2} } \right]{\text{ d}}x} $$
(39)
$$ I_{e2}^{(e)} = \frac{{V_{\max } }}{{D_{{{\text{DA}}}} }}\int\limits_{{x_{i} }}^{{x_{j} }} {\left[ {\beta_{1} v^{(e)} + \beta_{2} )} \right]{\text{ d}}x} $$
(40)

The various parameters are determined by linearization of nonlinear [Ca2+] and dopamine mechanisms \(\alpha , \, \gamma , \, \kappa , \, \eta , \, \mu_{1} , \, \mu_{2} , \, \beta_{1} ,{\text{ and }}\beta_{2}\). The equations are analyzed, and boundary conditions are added to get the following system of equations.

$$ \frac{{{\text{d}}I_{1} }}{{{\text{d}}\overline{u}^{(e)} }} \,\,=\,\, \sum\limits_{e = 1}^{N} {\overline{Q}^{(e)} } \frac{{{\text{d}}I_{1}^{(e)} }}{{{\text{d}}\overline{u}^{(e)} }}\overline{Q}^{{(e)^{T} }} = 0 $$
(41)
$$ \frac{{{\text{d}}I_{2} }}{{{\text{d}}\overline{v}^{(e)} }} \,\,=\,\, \sum\limits_{e = 1}^{N} {\overline{Q}^{(e)} } \frac{{{\text{d}}I_{2}^{(e)} }}{{{\text{d}}\overline{v}^{(e)} }}\overline{Q}^{{(e)^{T} }} = 0 $$
(42)

where

$$ {\overline{\text{Q}}}^{{\text{(e)}}} \,\, = \,\, \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {0} \\ {\begin{array}{*{20}c} {.} \\ {\begin{array}{*{20}c} {0} \\ {1} \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {0} \\ {0} \\ \end{array} } \\ {\begin{array}{*{20}c} {.} \\ {0} \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } & {\begin{array}{*{20}c} {0} \\ {\begin{array}{*{20}c} {.} \\ {\begin{array}{*{20}c} {0} \\ {0} \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {1} \\ {0} \\ \end{array} } \\ {\begin{array}{*{20}c} {.} \\ {0} \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right]\;{\text{and}}\;\overline{u} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {u_{1} } \\ {u_{2} } \\ \end{array} } \\ {u_{3} } \\ \end{array} } \\ {\begin{array}{*{20}c} . \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} . \\ {u_{19} } \\ \end{array} } \\ {u_{20} } \\ \end{array} } \\ {u_{21} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right],\overline{v} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} {v_{1} } \\ {v_{2} } \\ \end{array} } \\ {v_{3} } \\ \end{array} } \\ {\begin{array}{*{20}c} . \\ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\begin{array}{*{20}c} . \\ {v_{19} } \\ \end{array} } \\ {v_{20} } \\ \end{array} } \\ {v_{21} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right] $$
(43)
$$ \frac{{{\text{d}}I_{1}^{(e)} }}{{{\text{d}}\overline{u}^{(e)} }}\,\, =\,\, \frac{{{\text{d}}I_{a1}^{(e)} }}{{{\text{d}}\overline{u}^{(e)} }} + \frac{{\text{d}}}{{{\text{d}}t}}\frac{{{\text{d}}I_{b1}^{(e)} }}{{{\text{d}}\overline{u}^{(e)} }} + \frac{{{\text{d}}I_{c1}^{(e)} }}{{{\text{d}}\overline{u}^{(e)} }} + \frac{{{\text{d}}I_{{{\text{d}}1}}^{(e)} }}{{{\text{d}}\overline{u}^{(e)} }} + \frac{{{\text{d}}I_{e1}^{(e)} }}{{{\text{d}}\overline{u}^{(e)} }} + \frac{{{\text{d}}I_{f1}^{(e)} }}{{{\text{d}}\overline{u}^{(e)} }} - \frac{{{\text{d}}I_{g1}^{(e)} }}{{{\text{d}}\overline{u}^{(e)} }} - \frac{{{\text{d}}I_{h1}^{(e)} }}{{{\text{d}}\overline{u}^{(e)} }} $$
(44)
$$ \frac{{{\text{d}}I_{2}^{(e)} }}{{{\text{d}}\overline{v}^{(e)} }} \,\,=\,\, \frac{{{\text{d}}I_{a2}^{(e)} }}{{{\text{d}}\overline{v}^{(e)} }} + \frac{{\text{d}}}{{{\text{d}}t}}\frac{{{\text{d}}I_{b2}^{(e)} }}{{{\text{d}}\overline{v}^{(e)} }} + \frac{{{\text{d}}I_{c2}^{(e)} }}{{{\text{d}}\overline{v}^{(e)} }} + \frac{{{\text{d}}I_{{{\text{d}}2}}^{(e)} }}{{{\text{d}}\overline{v}^{(e)} }} - \frac{{{\text{d}}I_{e2}^{(e)} }}{{{\text{d}}\overline{v}^{(e)} }} $$
(45)
$$ \left[ A \right]_{42 \times 42} \left[ {\begin{array}{*{20}c} {\left[ {\frac{{\partial \overline{u}}}{\partial t}} \right]_{21 \times 1} } \\ {\left[ {\frac{{\partial \overline{v}}}{\partial t}} \right]_{21 \times 1} } \\ \end{array} } \right] + \left[ B \right]_{42 \times 42} \left[ {\begin{array}{*{20}c} {\left[ {\overline{u}} \right]_{21 \times 1} } \\ {\left[ {\overline{v}} \right]_{21 \times 1} } \\ \end{array} } \right] = [F]_{42 \times 1} $$
(46)

The time derivatives in the finite element techniques were solved by Crank–Nicolson scheme for system matrices (A and B) and system vectors (F).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, A., Pardasani, K.R. Computational model of calcium dynamics-dependent dopamine regulation and dysregulation in a dopaminergic neuron cell. Eur. Phys. J. Plus 138, 30 (2023). https://doi.org/10.1140/epjp/s13360-023-03691-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03691-1

Navigation