Skip to main content
Log in

Monogamy relationship between quantum and classical correlations for continuous variable in curved spacetime

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the quantum discord, the classical correlation and the monogamy relationship for continuous variable in the background of a Schwarzschild black hole. We find that, as the Hawking temperature increases, the Gaussian discord by measuring the mode A first reduces and then appears freezing phenomenon, while the Gaussian discord by measuring the mode B reduces to zero. The interesting phenomenon is that the classical correlation based on measurement on mode B is not affected by the Hawking radiation and remains constant, while the classical correlation based on measurement on mode A reduces with increasing Hawking temperature. Furthermore, we find two monogamy relationships between quantum and classical correlations, which means that the lost quantum correlation is transformed into the classical correlation by the Hawking effect. This shows that the quantum correlation is not really lost in Schwarzschild black hole, but just converted from one form to another. This has important implications for understanding the black hole information paradox from the perspective of quantum correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data.

References

  1. I. Fuentes-Schuller, R.B. Mann, Phys. Rev. Lett. 95, 120404 (2005)

    Article  ADS  Google Scholar 

  2. P.M. Alsing, I. Fuentes-Schuller, R.B. Mann, T.E. Tessier, Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  3. E. Martín-Martínez, I. Fuentes, Phys. Rev. A 83, 052306 (2011)

    Article  ADS  Google Scholar 

  4. Y. Dai, Z. Shen, Y. Shi, Phys. Rev. D 94, 025012 (2016)

    Article  ADS  Google Scholar 

  5. Y. Yang, J. Jing, Z. Tian, Eur. Phys. J. C 82, 688 (2022)

    Article  ADS  Google Scholar 

  6. E. Martín-Martínez, L. Garay, J. León, Phys. Rev. D 82, 064006 (2010)

    Article  ADS  Google Scholar 

  7. Z. Tian, J. Du, Phys. Rev. D 103, 085014 (2021)

    Article  ADS  Google Scholar 

  8. X. Liu, J. Jing, Z. Tian, W. Yao, Phys. Rev. D 103, 125025 (2021)

    Article  ADS  Google Scholar 

  9. S.M. Wu, H.S. Zeng, H.M. Cao, Class. Quantum Grav. 38, 185007 (2021)

    Article  ADS  Google Scholar 

  10. G. Adesso, I. Fuentes-Schuller, M. Ericsson, Phys. Rev. A 76, 062112 (2007)

    Article  ADS  Google Scholar 

  11. G. Adesso, S. Ragy, D. Girolami, Class. Quantum Grav. 29, 224002 (2012)

    Article  ADS  Google Scholar 

  12. B. Richter, K. Lorek, A. Dragan, Y. Omar, Phys. Rev. D 95, 076004 (2017)

    Article  ADS  Google Scholar 

  13. K. Debski, A. Dragan, Phys. Rev. D 98, 025003 (2018)

    Article  ADS  Google Scholar 

  14. T. Li, B. Zhang, L. You, Phys. Rev. D 97, 045005 (2018)

    Article  ADS  Google Scholar 

  15. S. Bhattacharya, N. Joshi, Phys. Rev. D 105, 065007 (2022)

    Article  ADS  Google Scholar 

  16. J. Wang, H. Cao, J. Jing, H. Fan, Phys. Rev. D 93, 125011 (2016)

    Article  ADS  Google Scholar 

  17. S.M. Wu, H.S. Zeng, Eur. Phys. J. C 82, 4 (2022)

    Article  ADS  Google Scholar 

  18. Z. Liu, J. Zhang, R.B. Mann, H. Yu, Phys. Rev. D 105, 085012 (2022)

    Article  ADS  Google Scholar 

  19. Z. Liu, J. Zhang, H. Yu, J. High Energy Phys. 08, 020 (2021)

    Article  ADS  Google Scholar 

  20. T. Liu, J. Jing, J. Wang, Adv. Quantum Technol. 1, 1800072 (2018)

    Article  Google Scholar 

  21. T. Liu, J. Wang, J. Jing, H. Fan, Ann. Phys. 390, 334–344 (2018)

    Article  ADS  Google Scholar 

  22. K. Gallock-Yoshimura, E. Tjoa, R.B. Mann, Phys. Rev. D 104, 025001 (2021)

    Article  ADS  Google Scholar 

  23. S.M. Wu, H.S. Zeng, T. Liu, New J. Phys. 24, 073004 (2022)

    Article  ADS  Google Scholar 

  24. W.G. Unruh, Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  25. L.C.B. Crispino, A. Higuchi, G.E.A. Matsas, Rev. Mod. Phys. 80, 787 (2008)

    Article  ADS  Google Scholar 

  26. L. Bombelli, R.K. Koul, J. Lee, R.D. Sorkin, Phys. Rev. D 34, 373 (1986)

    Article  ADS  Google Scholar 

  27. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  Google Scholar 

  28. S.W. Hawking, Phys. Rev. D 14, 2460 (1976)

    Article  ADS  Google Scholar 

  29. H. Terashima, Phys. Rev. D 61, 104016 (2000)

    Article  ADS  Google Scholar 

  30. The Physics of Quantum Information, edited by D. Bouwmeester, A. Ekert, A. Zeilinger (Springer, Berlin, 2000)

  31. D. Boschi, S. Branca, F.D. Martini, L. Hardy, S. Popescu, Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  Google Scholar 

  32. J.W. Pan, C. Simon, C. Brukner, A. Zeilinger, Nature (London) 410, 1067 (2001)

    Article  ADS  Google Scholar 

  33. A. Peres, D.R. Terno, Rev. Mod. Phys. 76, 93 (2004)

    Article  ADS  Google Scholar 

  34. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  35. L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)

    Article  ADS  Google Scholar 

  36. A. Fedrizzi, M. Zuppardo, G.G. Gillett, M.A. Broome, M.P. Almeida, M. Paternostro, A.G. White, T. Paterek, Phys. Rev. Lett. 111, 230504 (2013)

    Article  ADS  Google Scholar 

  37. T.S. Cubitt, F. Verstraete, W. Dür, J.I. Cirac, Phys. Rev. Lett. 91, 037902 (2003)

    Article  ADS  Google Scholar 

  38. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  39. J. Hou, L. Liu, X. Qi, 2001, 01244 (2020)

  40. D. Buono, G. Nocerino, A. Porzio, S. Solimeno, Phys. Rev. A 86, 042308 (2012)

    Article  ADS  Google Scholar 

  41. Q.Y. He, Q.H. Gong, M.D. Reid, Phys. Rev. Lett. 114, 060402 (2015)

    Article  ADS  Google Scholar 

  42. G. Adesso, A. Serafini, F. Illuminati, Phys. Rev. A 70, 022318 (2004)

    Article  ADS  Google Scholar 

  43. G. Adesso, A. Datta, Phys. Rev. Lett. 105, 030501 (2010)

    Article  ADS  Google Scholar 

  44. G. Adesso, D. Girolami, A. Serafini, Phys. Rev. Lett. 109, 190502 (2012)

    Article  ADS  Google Scholar 

  45. G. Adesso, S. Ragy, A.R. Lee, Open Syst. Inf. Dyn. 21, 1440001 (2014)

    Article  Google Scholar 

  46. S.M. Wu, H.S. Zeng, Eur. Phys. J. C 82, 716 (2022)

    Article  ADS  Google Scholar 

  47. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, 1982)

    Book  MATH  Google Scholar 

  48. Q. Pan, J. Jing, Phys. Rev. D 78, 065015 (2008)

    Article  ADS  Google Scholar 

  49. T. Damoar, R. Ruffini, Phys. Rev. D 14, 332 (1976)

    Article  ADS  Google Scholar 

  50. S.M. Wu, W.M. Li, H.S. Zeng, X.L. Huang, Quantum Inf. Process. 21, 362 (2022)

    Article  ADS  Google Scholar 

  51. S.M. Wu, Y.T. Cai, W.J. Peng, H.S. Zeng, Eur. Phys. J. C 82, 412 (2022)

    Article  ADS  Google Scholar 

  52. W.C. Qiang, G.H. Sun, Q. Dong, S.H. Dong, Phys. Rev. A 98, 022320 (2018)

    Article  ADS  Google Scholar 

  53. S. Xu, X.K. Song, J.D. Shi, L. Ye, Phys. Rev. D 89, 065022 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 12205133, 1217050862 and 11275064), LJKQZ20222315 and 2021BSL013.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Li Huang or Hao-Sheng Zeng.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SM., Liu, DD., Wang, CX. et al. Monogamy relationship between quantum and classical correlations for continuous variable in curved spacetime. Eur. Phys. J. Plus 138, 56 (2023). https://doi.org/10.1140/epjp/s13360-023-03655-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03655-5

Navigation