Skip to main content
Log in

Quantum entanglement between a hole spin confined to a semiconductor quantum dot and a photon

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We demonstrate quantum entanglement between a single hole spin confined to a positively charged semiconductor quantum dot (QD) and a photon spontaneously emitted from the matter’s excited state. The QD system is in the Voigt geometry with two ground hole spin states and two excited trion states. We consider the light-matter coupling initially prepared in one of the ground hole spin states. For very weak Rabi frequencies, the spin-flip process transfers most of the population to another hole spin state, leading to the disentanglement between the single photon and single QD hole spin. A maximum entanglement is achieved by increasing the intensity of Rabi frequencies. In this case, the population almost equally distributes among all the bare quantum states. Our results may pave the way toward creating a scalable QD quantum computing architecture relying on the photon as flying qubits to mediate entanglement between distant nodes of a QD network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. C.H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W.K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  Google Scholar 

  2. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  Google Scholar 

  3. J. Yin, Y.-H. Li, S.-K. Liao, M. Yang, Y. Cao, L. Zhang, J.-G. Ren, W.-Q. Cai, W.-Y. Liu, S.-L. Li, R. Shu, Y.-M. Huang, L. Deng, L. Li, Q. Zhang, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, X.-B. Wang, F. Xu, J.-Y. Wang, C.-Z. Peng, A.K. Ekert, J.-W. Pan, Entanglement-based secure quantum cryptography over 1,120 kilometres. Nature 582, 501 (2020)

    Article  ADS  Google Scholar 

  4. J.P. Dowling, K.P. Seshadreesan, Quantum optical technologies for metrology, sensing, and imaging. J. Lightwave Technol. 33, 2359 (2015)

    Article  ADS  Google Scholar 

  5. R. Jozsa, N. Linden, On the role of entanglement in quantum-computational speed-up. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459, 211 (2003)

    Article  MATH  Google Scholar 

  6. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464, 45 (2010)

    Article  ADS  Google Scholar 

  7. C. Kloeffel, D. Loss, Prospects for spin-based quantum computing in quantum dots. Annu. Rev. Condens. Matter Phys. 4, 51 (2013)

    Article  ADS  Google Scholar 

  8. R. Blatt, D. Wineland, Entangled states of trapped atomic ions. Nature 453, 1008 (2008)

    Article  ADS  Google Scholar 

  9. J.J. García-Ripoll, P. Zoller, J.I. Cirac, Quantum information processing with cold atoms and trapped ions. J. Phys. B At. Mol. Opt. Phys. 38, S567 (2005)

    Article  ADS  Google Scholar 

  10. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T.C. White, J. Mutus, A.G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A.N. Korotkov, A.N. Cleland, J.M. Martinis, Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500 (2014)

    Article  ADS  Google Scholar 

  11. N. Roch, M.E. Schwartz, F. Motzoi, C. Macklin, R. Vijay, A.W. Eddins, A.N. Korotkov, K.B. Whaley, M. Sarovar, I. Siddiqi, Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits. Phys. Rev. Lett. 112, 170501 (2014)

    Article  ADS  Google Scholar 

  12. K.C. Lee, M.R. Sprague, B.J. Sussman, J. Nunn, N.K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K.F. Reim, D. England, D. Jaksch, I.A. Walmsley, Entangling macroscopic diamonds at room temperature. Science (80-) 334, 1253 (2011)

    Article  ADS  Google Scholar 

  13. W.B. Gao, A. Imamoglu, H. Bernien, R. Hanson, Coherent manipulation, measurement and entanglement of individual solid-state spins using optical fields. Nat. Photonics 9, 363 (2015)

    Article  ADS  Google Scholar 

  14. A. Imamog, D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, A. Small, Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999)

    Article  ADS  Google Scholar 

  15. W. Yao, R.B. Liu, L.J. Sham, Theory of control of the spin-photon interface for quantum networks. Phys. Rev. Lett. 95, 1 (2005)

    Article  MATH  Google Scholar 

  16. E. Togan, Y. Chu, A.S. Trifonov, L. Jiang, J. Maze, L. Childress, M.V.G. Dutt, A.S. Sørensen, P.R. Hemmer, A.S. Zibrov, M.D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730 (2010)

    Article  ADS  Google Scholar 

  17. J.R. Schaibley, A.P. Burgers, G.A. McCracken, L.M. Duan, P.R. Berman, D.G. Steel, A.S. Bracker, D. Gammon, L.J. Sham, Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 110, 1 (2013)

    Article  Google Scholar 

  18. K. De Greve, L. Yu, P.L. McMahon, J.S. Pelc, C.M. Natarajan, N.Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R.H. Hadfield, A. Forchel, M.M. Fejer, Y. Yamamoto, Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421 (2012)

    Article  ADS  Google Scholar 

  19. S. Sun, E. Waks, Deterministic generation of entanglement between a quantum-dot spin and a photon. Phys. Rev. A 90, 42322 (2014)

    Article  ADS  Google Scholar 

  20. D. Loss, D.P. Divincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  21. M. Atatüre, J. Dreiser, A. Badolato, A. Högele, K. Karrai, A. Imamoglu, Quantum-dot spin-state preparation with near-unity fidelity. Science (80-) 312, 551 (2006)

    Article  ADS  Google Scholar 

  22. W.A. Coish, D. Loss, Hyperfine interaction in a quantum dot: non-markovian electron spin dynamics. Phys. Rev. B 70, 195340 (2004)

    Article  ADS  Google Scholar 

  23. W. Yao, R.-B. Liu, L.J. Sham, Theory of electron spin decoherence by interacting nuclear spins in a quantum dot. Phys. Rev. B 74, 195301 (2006)

    Article  ADS  Google Scholar 

  24. R.J. Warburton, Single spins in self-assembled quantum dots. Nat. Mater. 12, 483 (2013)

    Article  ADS  Google Scholar 

  25. A. Tartakovskii, Holes avoid decoherence. Nat. Photonics 5, 647 (2011)

    Article  ADS  Google Scholar 

  26. D. Brunner, B.D. Gerardot, P.A. Dalgarno, G. Wüst, K. Karrai, N.G. Stoltz, P.M. Petroff, R.J. Warburton, A coherent single-hole spin in a semiconductor. Science (80-.) 325, 70 (2009)

    Article  ADS  Google Scholar 

  27. J. Fischer, W.A. Coish, D.V. Bulaev, D. Loss, Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B Condens. Matter Mater. Phys. 78, 1 (2008)

    Article  Google Scholar 

  28. C. Testelin, F. Bernardot, B. Eble, M. Chamarro, Hole-spin dephasing time associated with hyperfine interaction in quantum dots. Phys. Rev. B Condens. Matter Mater. Phys. 79, 1 (2009)

    Article  Google Scholar 

  29. J.H. Prechtel, A.V. Kuhlmann, J. Houel, A. Ludwig, S.R. Valentin, A.D. Wieck, R.J. Warburton, Decoupling a hole spin qubit from the nuclear spins. Nat. Mater. 15, 981 (2016)

    Article  ADS  Google Scholar 

  30. M. Borhani, V.N. Golovach, D. Loss, Spin decay in a quantum dot coupled to a quantum point contact. Phys. Rev. B 73, 155311 (2006)

    Article  ADS  Google Scholar 

  31. D. Press, K. De Greve, P.L. McMahon, T.D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367 (2010)

    Article  ADS  Google Scholar 

  32. A. Greilich, D.R. Yakovlev, A. Shabaev, A.L. Efros, I.A. Yugova, R. Oulton, V. Stavarache, D. Reuter, A. Wieck, M. Bayer, Mode locking of electron spin coherences in singly charged quantum dots. Science (80-.) 313, 341 (2006)

    Article  ADS  Google Scholar 

  33. L. Huthmacher, R. Stockill, E. Clarke, M. Hugues, C. Le Gall, M. Atatüre, Coherence of a dynamically decoupled quantum-dot hole spin. Phys. Rev. B 97, 1 (2018)

    Article  Google Scholar 

  34. X. Xu, B. Sun, P.R. Berman, D.G. Steel, A.S. Bracker, D. Gammon, L.J. Sham, Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nat. Phys. 4, 692 (2008)

    Article  Google Scholar 

  35. J. Houel, J.H. Prechtel, A.V. Kuhlmann, D. Brunner, C.E. Kuklewicz, B.D. Gerardot, N.G. Stoltz, P.M. Petroff, R.J. Warburton, High resolution coherent population trapping on a single hole spin in a semiconductor quantum dot. Phys. Rev. Lett. 112, 107401 (2014)

    Article  ADS  Google Scholar 

  36. B. Sangshekan, N. Einali Saghavaz, A. Hamrah Gharamaleki, M. Sahrai, Maximal atom-photon entanglement by the incoherent pumping fields. Eur. Phys. J. Plus 134, 274 (2019)

    Article  Google Scholar 

  37. M. Ghaderi Goran Abad, M. Mahmoudi, Atom–photon entanglement near a plasmonic nanostructure. Eur. Phys. J. Plus 135, 352 (2020)

    Article  Google Scholar 

  38. Z. Amini Sabegh, R. Amiri, M. Mahmoudi, Spatially dependent atom-photon entanglement. Sci. Rep. 8, 13840 (2018)

    Article  ADS  Google Scholar 

  39. J.R. Schaibley, Spin-photon Entanglement and quantum optics with single quantum dots, Ph.D. thesis, University of Michigan, Michigan (2013)

  40. H. Araki, E.H. Lieb, Entropy inequalities. Commun. Math. Phys. 18, 160 (1970)

    Article  ADS  Google Scholar 

  41. K.L. Truex, Optical coherent control of a single charged indium arsenied quantum dot. Ph.D. thesis. University of Michigan, Michigan (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meisam Memarzadeh.

Appendix

Appendix

As an example, we calculate the term \( H_{14}\) in Eq. (9). From Eqs. (2), (6) and (7), one can evaluate the Hamiltonian term

$$ \begin{aligned} V_{14} & = - 1{|}{\varvec{\mu}}{|}4.{\varvec{E}}\left( t \right) = - \frac{\wp }{2\sqrt 2 }\left( {E_{x} \left( t \right)e^{ - i\omega t} + E_{x}^{*} \left( t \right)e^{i\omega t} } \right) \\ & = \frac{\hbar }{2}\left( {\Omega_{x} \left( t \right)e^{ - i\omega t} + \Omega_{x}^{*} \left( t \right)e^{i\omega t} } \right), \\ \end{aligned} $$

where \(\Omega_{x} \equiv \frac{{\wp E_{x} }}{\hbar \surd 2}\) and \(\Omega_{y} \equiv \frac{{i\wp E_{y} }}{\hbar \surd 2}\) are the Rabi frequencies along the x- and y-axis.

Thus,

$$ H_{14} = V_{14} e^{ - i\omega t} = \frac{\hbar }{2}\left( {\Omega_{x} \left( t \right)e^{ - 2i\omega t} + \Omega_{x}^{*} \left( t \right)} \right). $$
(A1)

According to the RWA, we can neglect terms that oscillate at 2ω, as they will average out to zero, while the other terms remain unchanged. Therefore,\( H_{14} = \frac{\hbar }{2} \Omega_{x}^{*} \left( t \right)\). Similarly, the other terms of Eq. (9) can be obtained.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Memarzadeh, M., Sahrai, M. & Hamedi, H.R. Quantum entanglement between a hole spin confined to a semiconductor quantum dot and a photon. Eur. Phys. J. Plus 138, 75 (2023). https://doi.org/10.1140/epjp/s13360-023-03652-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03652-8

Navigation