Skip to main content
Log in

Disentropy in astronomy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Astronomers often have to deal with randomness. For example, stars and radio telescopes are sources of randomness. On the other hand, randomly distributed stars in some astronomical images can make harder the task of an algorithm that aims the automatic identification of important structures in the image. Therefore, a randomness measure, like the disentropy of the autocorrelation function, can be a useful mathematical tool for astronomers. In this direction, in the present work we firstly show three applications of the disentropy of the autocorrelation in astronomy. Initially, we calculate the randomness of the images of cosmic microwave background maps produced by Planck satellite, providing for the first time a numerical value for that randomness. Following, we use the disentropy to build an algorithm that erases parts of astronomical images with large randomness, what is particularly useful to remove background stars. In the third application, the disentropy of the autocorrelation is used to calculate the randomness of the signal of a radio pulsar used as random number generator. At last, we used the relative disentropy as distance measure between probability distributions in order to find the parameters of the probability density function of the flux density of a pulsar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this published article, or they were obtained in public databases.

References

  1. J.R. Dawson, G. Hobbs, Y. Gao, S. Camtepe, J. Pieprzyk, Y. Feng, L. Tranfa, S. Bradbury, W. Zhu, D. Li (2022) Physical publicly verifiable randomness from pulsars. Astron. Comput. 38:100549/1–10

  2. G.B. da Silva, R.V. Ramos, The Lambert–Tsallis Wq function. Physica A 525, 164–170 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. S.R. Valluri, D.J. Jeffrey, R.M. Corless, Some applications of the Lambert W function to physics. Can. J. Phys. 78(9), 823–831 (2000)

    ADS  Google Scholar 

  5. K. Roberts, S.R. Valluri, Tutorial: the quantum finite square well and the Lambert W function. Can. J. Phys. 95(2), 105–110 (2017)

    Article  ADS  Google Scholar 

  6. J.S. de Andrade, K.Z. Nobrega, R.V. Ramos, Analytical solution of the current–voltage characteristics of circuits with power-law dependence of the current on the applied voltage using the Lambert–Tsallis Wq function. IEEE Trans Circ. Syst. II Express Briefs (2021). https://doi.org/10.1109/TCSII.2021.3110407

    Article  Google Scholar 

  7. R.V. Ramos, Analytical solutions of cubic and quintic polynomials in micro and nanoelectronics using the Lambert–Tsallis Wq function. J Comput Electron (2022). https://doi.org/10.1007/s10825-022-01852-6

    Article  Google Scholar 

  8. J.L.M. da Silva, F.V. Mendes, R.V. Ramos, Radial basis function network using Lambert-Tsallis Wq function. Physica A 534, 122168 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. R.V. Ramos, Disentropy of the Wigner function. J. Opt. Soc. Am. B 36, 2244–2249 (2019). https://doi.org/10.1364/JOSAB.36.002244

    Article  ADS  Google Scholar 

  11. J.L.E. da Silva, R.V. Ramos, Calculation of the disentropy of the Wigner function using the Lambert–Tsallis Wq function with non-integer q values. J. Opt. Soc. Am. B 37(7), 2035–2040 (2020). https://doi.org/10.1364/JOSAB.390323

    Article  ADS  Google Scholar 

  12. R.V. Ramos, Estimation of the randomness of continuous and discrete signals using the disentropy of the autocorrelation. SN Compt. Sci. 2, 254 (2021). https://doi.org/10.1007/s42979-021-00666-w

    Article  Google Scholar 

  13. G.S. Castro, R.V. Ramos, Enhancing eavesdropping detection in quantum key distribution using disentropy measure of randomness. Quantum Inf. Process. 21, 79 (2022). https://doi.org/10.1007/s11128-022-03422-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. J.L.E. da Silva, F.V. Mendes, R.V. Ramos, The Rκκ function and its applications: disentropy, image processing and the κ-diode. Eur. Phys. J. Plus (2022). https://doi.org/10.1140/epjp/s13360-022-02555-4

    Article  Google Scholar 

  15. F.V. Mendes, C. Lima, R.V. Ramos, Applications of the Lambert-Tsallis Wq function in quantum photonic Gaussian boson sampling. Quantum Inf. Process. 21, 215 (2022). https://doi.org/10.1007/s11128-022-03559-w

    Article  ADS  MATH  Google Scholar 

  16. P.A.R. Ade et al., Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. (2014). https://doi.org/10.1051/0004-6361/201321529

    Article  Google Scholar 

  17. N. Aghanim et al., Planck 2018 results I. Overview and the cosmological legacy of Planck. Astron. Astrophys. (2020). https://doi.org/10.1051/0004-6361/201833880

    Article  Google Scholar 

  18. N. Jarosik et al., Seven-year Wilkinson microwave anisotropy probe (WMAP∗) observations: sky maps, systematic errors and basic results. Astrophys. J. Suppl. Ser. (2011). https://doi.org/10.1088/0067-0049/192/2/14

    Article  Google Scholar 

  19. E. Komatsu et al., Seven-year Wilkinson microwave anisotropy probe (WMAP∗) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. (2011). https://doi.org/10.1088/0067-0049/192/2/18

    Article  Google Scholar 

  20. V.G. Gurzadyan et al., Kolmogorov cosmic microwave background sky. Astron. Astrophys. 497(2), 343–346 (2009). https://doi.org/10.1051/0004-6361/200911625

    Article  ADS  Google Scholar 

  21. V.G. Gurzadyan, A.A. Kocharyan, Kolmogorov stochasticity parameter measuring the randomness in the cosmic microwave background. Astron. Astrophys. 492, L33–L34 (2008). https://doi.org/10.1051/0004-6361:200811188

    Article  ADS  Google Scholar 

  22. V.G. Gurzadyan et al., A weakly random Universe? Astron. Astrophys. 525, L7 (2011). https://doi.org/10.1051/0004-6361/201016012

    Article  ADS  MATH  Google Scholar 

  23. V.G. Gurzadyan, A.L. Kashin, H. Khachatryan, E. Poghosian, S. Sargsyan, G. Yegorian, To the center of cold spot with Planck. Astron. Astrophys. 566, A135 (2014). https://doi.org/10.1051/0004-6361/201423565

    Article  ADS  Google Scholar 

  24. I. Szapudi et al., Detection of a supervoid aligned with the cold spot of the cosmic microwave background. MNRAS 450, 288–294 (2015)

    Article  ADS  Google Scholar 

  25. V.G. Gurzadyan, I. Ciufolini, S. Sargsyan, G. Yegorian, S. Mirzoyan, A. Paolozzi, Satellite probing general relativity and its extensions and Kolmogorov analysis. EPL (2013). https://doi.org/10.1209/0295-5075/102/60002

    Article  Google Scholar 

  26. S.K. Næss, Application of the Kolmogorov–Smirnov test to CMB data: Is the universe really weakly random? Astron. Astrophys. 538, A17 (2012). https://doi.org/10.1051/0004-6361/201117344

    Article  ADS  MATH  Google Scholar 

  27. M. Cohen, W. Lu, A diffusion-based method for removing background stars from astronomical images. Astron. Comput. 37, 100507 (2021)

    Article  Google Scholar 

  28. M.B. Mickaliger, A.E. McEwen, M.A. McLaughlin, D.R. Lorimer, A study of single pulses in the Parkes Multibeam Pulsar Survey. MNRAS 479, 5413–5422 (2018). https://doi.org/10.1093/mnras/sty1785

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian agencies CNPq via Grant No. 309374/2021-9 and CAPES via Grant No. 001. Also, this work was performed as part of the Brazilian National Institute of Science and Technology for Quantum Information. The authors thank J. R. Dawson and G. Hobbs for useful discussions. This paper includes archived data obtained through the CSIRO Data Access Portal (data.csiro.au).

Author information

Authors and Affiliations

Authors

Contributions

F.J.L. de Almeida: Conceptualization, Visualization, and Numerical Simulation. R.V. Ramos: Conceptualization, Methodology, Visualization, Numerical Simulation, and Writing—original draft.

Corresponding author

Correspondence to R. V. Ramos.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, F.J.L., Ramos, R.V. Disentropy in astronomy. Eur. Phys. J. Plus 138, 20 (2023). https://doi.org/10.1140/epjp/s13360-022-03640-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03640-4

Navigation