Skip to main content
Log in

Finsler–Randers model for anisotropic constant-roll inflation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we study constant-roll inflation driven by a scalar field with the Finsler model. In this scenario, using the Hamilton–Jacobi-like formalism, an ansatz for the Hubble parameter (as a function of the scalar field), and some restrictions on the model parameters, we found new exact solutions for the inflaton potential, which include power-law, and hybrid among others. In this model, even-order slow-roll parameters approach non-negligible constants while their odd-order is asymptotically zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statements

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. S. Dodelson, Modern Cosmology (Elsevier (Singapore) Pte Ltd., Singapore, 2008)

    Google Scholar 

  2. P.A.R. Ade et al., Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571, A1 (2014)

    Article  Google Scholar 

  3. C.L. Bennett et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. Astrophys. J. Suppl. Ser. 208, 20 (2013)

    Article  ADS  Google Scholar 

  4. E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. Ser. 192, 18 (2011)

    Article  ADS  Google Scholar 

  5. P.A.R. Ade et al., Planck 2013 results. XXIII. Isotropy and statistics of the CMB. Astron. Astrophys. 571, A23 (2014)

    Article  Google Scholar 

  6. D. Bao, S.S. Chern, Z. Shen, An Introduction to Riemann–Finsler Geometry, Graduate Texts in Mathematics 200 (Springer, New York, 2000)

    Book  Google Scholar 

  7. H. Rund, The Differential Geometry of Finsler Spaces (Springer, Berlin, 1959)

    Book  MATH  Google Scholar 

  8. Z. Shen, Lectures on Finsler Geometry (World Scientific, Singapore, 2001)

    Book  MATH  Google Scholar 

  9. B. Riemann, Über die Hypothesen, welche der Geometrie zu Grunde liegen. Abh. Königlichen Ges. Wiss. Gött. 13, 133–150 (1868)

    MATH  Google Scholar 

  10. B. Riemann, On the hypotheses which lie at the bases of geometry. Nature 8, 14–17 (1873)

    Article  Google Scholar 

  11. P. Finsler, Über Kurven und Flächen in allgemeinen Räumen, Ph.D. Thesis, (Georg-August Universität zu Göttingen, 1918)

  12. C. Pfeifer, Finsler spacetime geometry in Physics. Int. J. Geom. Methods Mod. Phys. 16, 1941004 (2019)

    Article  MathSciNet  Google Scholar 

  13. R.K. Tavakol, N. Van den Bergh, Viability criteria for the theories of gravity and Finsler spaces. Gen. Relativ. Gravit. 18, 849–859 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. G.S. Asanov, Variational principle for the Finslerian extension of general relativity. Aequ. Math. 24, 207–229 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. G.S. Asanov, Gravitational field equations based on Finsler geometry. Found. Phys. 13, 501–527 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  16. G.S. Asanov, Finsler Geometry, Relativity and Gauge Theories (Kluwer Academic Publishers Group, Holland, 1985)

    Book  MATH  Google Scholar 

  17. C. Lammerzahl, A. Di Virgilio, Experimental gravitation. Int. J. Mod. Phys. D 25, 1630022 (2016)

    Article  ADS  Google Scholar 

  18. C. Will, The confrontation between general relativity and experiment. Living Rev. Rel. 17, 4 (2014)

    Article  MATH  Google Scholar 

  19. S. Girelli, F. Liberati, L. Sindoni, Planck-scale modified dispersion relations and Finsler geometry. Phys. Rev. D 75, 064015 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Albrecht, P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982)

    Article  ADS  Google Scholar 

  21. A.H. Guth, Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23(2), 347–356 (1981)

    Article  ADS  MATH  Google Scholar 

  22. A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108(6), 389–393 (1982)

    Article  ADS  Google Scholar 

  23. K. Sato, First-order phase transition of a vacuum and the expansion of the Universe. Mon. Not. R. Astron. Soc. 195(3), 467–479 (1981)

    Article  ADS  Google Scholar 

  24. A.A. Starobinsky, A new type of isotropic cosmological models without singularity. Phys. Lett. B 91(1), 99–102 (1980)

    Article  ADS  MATH  Google Scholar 

  25. A. Riotto, Particle Cosmology. arXiv:hep-ph/0210162 (2010)

  26. X. Li, S. Wang, Z. Chang, Anisotropic inflation in the Finsler spacetime. Eur. Phys. J. C 75, 260 (2015)

    Article  ADS  Google Scholar 

  27. D. Bao, R.L. Bryant, S.-S. Chern, Z. Shen, A Sampler of Riemann–Finsler Geometry (Cambridge University Press, New York, 2004)

    MATH  Google Scholar 

  28. S.-S. Chern, Z. Shen, Riemann–Finsler Geometry, Nankai Tracts in Mathematics, vol. 6. (World Scientific, 2005)

    Book  MATH  Google Scholar 

  29. M.F. Dahl, A brief introduction to Finsler geometry, Lecture Notes (2006)

  30. X. Mo, An Introduction to Finsler Geometry, Peking University Series in Mathematics, vol. 1. (World Scientific, 2006)

    MATH  Google Scholar 

  31. H. Motohashi, S. Mukohyama, M. Oliosi, Constant roll and primordial black holes. JCAP 2020(03), 002 (2020)

    Article  MathSciNet  Google Scholar 

  32. H. Motohashi, A.A. Starobinsky, J. Yokoyama, Inflation with a constant rate of roll. JCAP 2015(09), 018 (2015)

    Article  MathSciNet  Google Scholar 

  33. A. Ito, J. Soda, Anisotropic constant-roll Inflation. Eur. Phys. J. C 78, 55 (2018)

    Article  ADS  Google Scholar 

  34. L.F. Abbott, M.B. Wise, Constraints on generalized inflationary cosmologies. Nucl. Phys. B 244, 541–548 (1984)

    Article  ADS  Google Scholar 

  35. F. Lucchin, S. Matarrese, Power law inflation. Phys. Rev. D 32, 1316–1322 (1985)

    Article  ADS  Google Scholar 

  36. A.D. Linde, Hybrid inflation. Phys. Rev. D 49, 748–754 (1994)

    Article  ADS  Google Scholar 

  37. V.F. Mukhanov, Gravitational instability of the universe filled with a scalar field. JETP Lett. 41, 493–496 (1985)

    ADS  Google Scholar 

  38. M. Sasaki, Large scale quantum fluctuations in the inflationary universe. Prog. Theor. Phys. 76, 1036–1046 (1986)

    Article  ADS  Google Scholar 

  39. Z. Nekouee, S.K. Narasimhamurthy, H.M. Manjunatha, V. Anitha, Constant-roll inflation from non-commutative geometry viewpoint. Int. J. Mod. Phys. D (2022). https://doi.org/10.1142/S0218271823500037

    Article  Google Scholar 

Download references

Acknowledgements

The author Z. Nekouee is very grateful to Department of PG Studies and Research in Mathematics, Kuvempu University for providing the opportunity for a post-doctoral researcher position, and also like to thank Professor S. K. Narasimhamurthy, the research supervisor, for his passionate support and constructive criticisms of this study effort. We are also grateful to the honorable referee and the editor for their valuable comments and suggestions, which have enabled us to improve the manuscript substantially.

Author information

Authors and Affiliations

Authors

Contributions

ZN: analysis, Plotting graphs, Writing manuscript. SKN: Editing and analysis. HMM and SKS: Reviewing and Editing.

Corresponding author

Correspondence to S. K. Narasimhamurthy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekouee, Z., Narasimhamurthy, S.K., Manjunatha, H.M. et al. Finsler–Randers model for anisotropic constant-roll inflation. Eur. Phys. J. Plus 137, 1388 (2022). https://doi.org/10.1140/epjp/s13360-022-03582-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03582-x

Navigation