Skip to main content
Log in

Band valley flattening and exciton appearance/disappearance under isotropic strain in monolayer WS2

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Mechanism of exciton appearance and disappearance under isotropic strain in monolayer WS2 is investigated using the non-local van der Waals density functionals theory with taking into account the spin–orbit coupling (SOC). The essential effects such as vertical shift (the shift in the binding energy scale) of the d and p partial orbitals of the W and S atoms, respectively, and the flattening of band valleys caused by strain are explored. The exciton appearance and disappearance in the isotropic strained WS2 are discussed. Thanks to the spin splitting by SOC effect, light and dark excitons are visually shown. Under strain, the flattening of the band valleys may lead to the disappearance of excitons, causing the direct-to-indirect transition of the band gap. Furthermore, the vertical shift of electron orbitals at band edges can result in a notable reduction in the band gap. These findings can open a possible path to manipulate excitons using strain scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors' comment: The datasets generated and analysed in this manuscript are available upon reasonable request, by contacting the corresponding authors.]

References

  1. C. Ballif, M. Regula, F. Levy, Sol. Energy Mater. Sol. Cells 57, 189 (1999)

    Article  Google Scholar 

  2. S.Y. Chen, C. Zheng, M.S. Fuhrer, J. Yan, Nano Lett. 15, 2526 (2015)

    Article  ADS  Google Scholar 

  3. S.K. Srivastava, B.N. Avasthi, J. Mater. Sci. 20, 3801 (1985)

    Article  ADS  Google Scholar 

  4. C. Ataca, H. Sahin, S. Ciraci, J. Phys. Chem. C 116, 8983 (2012)

    Article  Google Scholar 

  5. A.B. Kaul, J. Mater. Res. 29, 348 (2014)

    Article  ADS  Google Scholar 

  6. Y. Sang, Z. Zhao, M. Zhao, P. Hao, Y. Leng, H. Liu, Adv. Mater. 27, 363 (2015)

    Article  Google Scholar 

  7. H.R. Gutierrez, N. Perea-Lopez, A.L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V.H. Crespi, H. Terrones, M. Terrones, Nano Lett. 13, 3447 (2013)

    Article  ADS  Google Scholar 

  8. L. Yuan, L. Huang, Nanoscale 7, 7402 (2015)

    Article  ADS  Google Scholar 

  9. M. Pumera, H.L. Adeline, TrAC Trends Anal. Chem. 61, 49 (2014)

    Article  Google Scholar 

  10. E. Bucher, A. Aruchamy, Photoelectrochemistry and Photovoltaics of Layered Semiconductors, vol. 14 (Springer, Netherlands, 1992), p.1

    Book  Google Scholar 

  11. A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, W. Jaegermann, Phys. Rev. B 64, 205416 (2001)

    Article  ADS  Google Scholar 

  12. H.A. Therese, J. Li, U. Kolb, W. Tremel, Solid State Sci. 7, 67 (2005)

    Article  ADS  Google Scholar 

  13. P. Zeng, X. Ji, Z. Su, S. Zhang, RSC Adv. 8, 20557 (2018)

    Article  ADS  Google Scholar 

  14. R. Roldán, J.A. Silva-Guillén, M.P. López-Sancho, F. Guinea, E. Cappelluti, P. Ordejón, Ann. Phys. 526, 347 (2014)

    Article  Google Scholar 

  15. Z. Fan, Z. Wei-Bing, T. Bi-Yu, Chin. Phys. B 24, 097103 (2015)

    Article  ADS  Google Scholar 

  16. S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D.S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, J. Wu, Nano Lett. 14, 3185 (2014)

    Article  ADS  Google Scholar 

  17. M. Hosseini, M. Elahi, M. Pourfath, D. Esseni, IEEE Trans. Electron Devices 62, 3192 (2015)

    Article  ADS  Google Scholar 

  18. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  19. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  20. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  21. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  23. K. Lee, E.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Phys. Rev. B 82, 081101(R) (2010)

    Article  ADS  Google Scholar 

  24. J. Klimeš, D.R. Bowler, A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010)

    ADS  Google Scholar 

  25. J. Klimeš, D.R. Bowler, A. Michaelides, Phys. Rev. B 83, 195131 (2011)

    Article  ADS  Google Scholar 

  26. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)

    Article  ADS  Google Scholar 

  27. W.J. Schutte, J.L. de Boer, F. Jellinek, J. Solid State Chem. 70, 207 (1987)

    Article  ADS  Google Scholar 

  28. Z. Li, T. Wang, C. Jin, Z. Lu, Z. Lian, Y. Meng, M. Blei, S. Gao, T. Taniguchi, K. Watanabe, T. Ren, S. Tongay, L. Yang, D. Smirnov, T. Cao, S.-F. Shi, Nat. Commun. 10, 1 (2019)

    Article  ADS  Google Scholar 

  29. K. Kośmider, W.G. Jhon, J. Fernández-Rossier, Phys. Rev. B 88, 245436 (2013)

    Article  ADS  Google Scholar 

  30. Q.F. Yao, J. Cai, W.Y. Tong, S.J. Gong, J.Q. Wang, X. Wan, C.G. Duan, J.H. Chu, Phys. Rev. B 95, 165401 (2017)

    Article  ADS  Google Scholar 

  31. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  32. A. Raja, A. Chaves, Y. Jaeeun, G. Arefe, H.M. Hill, A.F. Rigosi, T.C. Berkelbach, P. Nagler, C. Schüller, T. Korn, C. Nuckolls, J. Hone, L.E. Brus, T.F. Heinz, D.R. Reichman, A. Chernikov, Nat. Commun. 8, 15251 (2017)

    Article  ADS  Google Scholar 

  33. Z. Li, T. Wang, C. Jin, L. Zhengguang, Z. Lian, Y. Meng, M. Blei, S. Gao, T. Taniguchi, K. Watanabe, T. Ren, S. Tongay, L. Yang, D. Smirnov, T. Cao, S.-F. Shi, Nat. Commun. 10, 1 (2019)

    Article  Google Scholar 

  34. D. Shin, H. Hübener, U. De Giovannini, H. Jin, A. Rubio, N. Park, Nat. Commun. 9, 1 (2018)

    Article  Google Scholar 

  35. D. Xiao, G. Liu, W. Feng, X. Xu, W. Yao, Phys. Rev. Lett. 108, 196802 (2012)

    Article  ADS  Google Scholar 

  36. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, J. Feng, Nat. Commun. 3, 1 (2012)

    Google Scholar 

  37. G. Berghäuser, I. Bernal-Villamil, R. Schmidt, R. Schneider, I. Niehues, P. Erhart, S.M. de Váconcellos, R. Bratschitsh, A. Knorr, E. Malic, Nat. Commun. 9, 1 (2018)

    Article  Google Scholar 

  38. E. Cappelluti, R. Roldán, J.A. Silva-Guillén, P. Ordejón Guinea, Phys. Rev. B 88, 075409 (2013)

    Article  ADS  Google Scholar 

  39. S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Annu. Rev. Mater. Res. 45, 63 (2015)

    Article  ADS  Google Scholar 

  40. J. Su, J. He, J. Zhang, Z. Lin, J. Chang, J. Zhang, Y. Hao, Sci. Rep. 9, 3518 (2019)

    Article  ADS  Google Scholar 

  41. R.K. Defo, S. Fang, S.N. Shirodkar, G.A. Tritsaris, A. Dimoulas, E. Kaxiras, Phys. Rev. B 94, 155310 (2016)

    Article  ADS  Google Scholar 

  42. A. Kumar, P.K. Ahluwalia, Physica B: Condens. Matt. 419, 66 (2013)

    Article  ADS  Google Scholar 

  43. J. Feng, X. Qian, C.W. Huang, J. Li, Nat. Photonics 6, 866 (2012)

    Article  ADS  Google Scholar 

  44. J. Krustok, R. Kaupmees, R. Jaaniso, V. Kiisk, I. Sildos, B. Li, Y. Gong, AIP Adv. 7, 065005 (2017)

    Article  ADS  Google Scholar 

  45. A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H.S. van der Zant, G.A. Steele, Nano Lett. 13, 5361 (2013)

    Article  ADS  Google Scholar 

  46. A. Chernikov, A.M. Van Der Zande, H.M. Hill, A.F. Rigosi, A. Velauthapillai, J. Hone, T.F. Heinz, Phys. Rev. Lett. 115, 126802 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.01-2018.315. One of the authors (V. A. Dinh) would like to thank Center for Computational Physics, Institute of Physics, Vietnam Academy of Science and Technology for providing the HPC system.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quang Huy Tran or Van An Dinh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, Q.H., Tran, T.N., Luong, T.T. et al. Band valley flattening and exciton appearance/disappearance under isotropic strain in monolayer WS2. Eur. Phys. J. Plus 137, 1317 (2022). https://doi.org/10.1140/epjp/s13360-022-03537-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03537-2

Navigation