Skip to main content

Advertisement

Log in

Observational constraints and cosmological implications of NLE model with variable G

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We explore the cosmic dynamics of a homogeneous and isotropic cosmological model having flat spatial section driven by nonlinear electrodynamics (NLE) with the Newtonian constant G considered to be varying with the scale factor of the universe. By considering NLE field as the source of gravitation, we investigate for the current accelerated evolution of the universe. The evolution of universe starts with the nonzero energy density, then expands through a radiation dominated phase followed by a deceleration at the matter dominated phase and ends by transiting into the accelerating expansion during the recent past. We constrain the model parameters with the Observational Hubble Data to find the best-fit values of the parameters. By using the constrained values of parameters, we study the behavior of cosmological parameters like deceleration parameter, equation of state parameter along with the behavior of energy density, pressure and energy conditions. The classical stability of model is verified by using the adiabatic speed of sound squared. We end by utilizing diagnostic tools like statefinders and Om-diagnostic to examine the dark energy evolution in the model. We find that the NLE model with variable G explains the current accelerated expansion of the universe. However, the model does not incorporate the radiation dominated phase for the best-fit values of the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The paper has no associated data. All concepts and logical implications are given in the manuscript.

References

  1. A.G. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. P.A.R. Ade et al., Astron. Astrophys. 571, A16 (2014)

    Article  Google Scholar 

  4. N. Aghanim et al., Astron. Astrophys. 641, A6 (2020)

    Article  Google Scholar 

  5. E. Komatsu et al., Astrophys. J. Suppl. Ser. 192, 18 (2011)

    Article  ADS  Google Scholar 

  6. G. Hinshaw et al., Astrophys. J. Suppl. Ser. 208, 19 (2013)

    Article  ADS  Google Scholar 

  7. S. Capozziello, R. D’Agostino, O. Luongo, Int. J. Mod. Phys. D 28, 1930016 (2019)

    Article  ADS  Google Scholar 

  8. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342, 155–228 (2012)

    Article  ADS  Google Scholar 

  9. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1–104 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Born, Nature 132, 282 (1933)

    Article  ADS  Google Scholar 

  11. M. Born, L. Infeld, Proc. R. Soc. A 144, 425 (1934)

    ADS  Google Scholar 

  12. V.A. De Lorenci, R. Klippert, M. Novello, J.M. Salim, Phys. Rev. D 65, 063501 (2002)

    Article  ADS  Google Scholar 

  13. M. Novello, E. Goulart, J.M. Salim, S.E.P. Bergliaffa, Class. Quantum Gravity 24, 3021 (2007)

    Article  ADS  Google Scholar 

  14. L.G. Medeiros, Int. J. Mod. Phys. D 21, 1250073 (2012)

    Article  ADS  Google Scholar 

  15. M. Novello, S.E.P. Bergliaffa, J. Salim, Phys. Rev. D 69, 127301 (2004)

    Article  ADS  Google Scholar 

  16. D.N. Vollick, Phys. Rev. D 78, 063524 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. R. Garcia-Salcedo, T. Gonzalez, I. Quiros, Phys. Rev. D 89, 084047 (2014)

    Article  ADS  Google Scholar 

  18. S.I. Kruglov, Ann. Phys. 353, 299 (2015)

    Article  ADS  Google Scholar 

  19. A. Ovgun, Eur. Phys. J. C 77, 105 (2017)

    Article  ADS  Google Scholar 

  20. A. Ovgun, G. Leon, J. Magana, K. Jusufi, Eur. Phys. J. C 78, 462 (2018)

    Article  ADS  Google Scholar 

  21. G.W. Joseph, A. Ovgun, Indian J. Phys. 96, 1861–1866 (2022)

    Article  ADS  Google Scholar 

  22. S.H. Hendi, JHEP 1203, 065 (2012)

    Article  ADS  Google Scholar 

  23. D. Grasso, H.R. Ruinstein, Phys. Rep. 348, 163 (2001)

    Article  ADS  Google Scholar 

  24. R. Garcia-Salcedo, T. Gonzalez, A. Horta-Rangel, I. Quiros, Phys. Rev. D 90, 128301 (2014)

    Article  ADS  Google Scholar 

  25. S.I. Kruglov, Phys. Rev. D 92, 123523 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Sharif, S. Mumtaz, Eur. Phys. J. C 77, 136 (2017)

    Article  ADS  Google Scholar 

  27. G.P. Singh, N. Hulke, A. Singh, Can. J. Phys. 96, 992–998 (2018)

    Article  ADS  Google Scholar 

  28. P. Sarkar, P.K. Das, arXiv:2203.10877v1 [gr-qc] (2022)

  29. P. Dirac, Nature 139, 323 (1937)

    Article  ADS  Google Scholar 

  30. C. Brans, R. Dicke, Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  31. J.D. Barrow, Philos. Trans. R. Soc. A 363, 2139–2153 (2005)

    Article  ADS  Google Scholar 

  32. J.D. Barrow, J. Magueijo, Phys. Lett. B 443, 104 (1998)

    Article  ADS  Google Scholar 

  33. A. Albrecht, J. Magueijo Phys. Rev. D 59, 043516 (1999)

    Article  ADS  Google Scholar 

  34. E. Gaztanaga, E. Garcia-Berro, J. Isern, E. Bravo, I. Dominguez, Phys. Rev. D 65, 023506 (2001)

    Article  ADS  Google Scholar 

  35. S. Ray, U. Mukhopadhyay, S. Ray, A. Bhattacharjee, Int. J. Mod. Phys. D 28, 1930014 (2019)

    Article  ADS  Google Scholar 

  36. G. Franzmann, arXiv:1704.07368v1 [gr-qc] (2017)

  37. Z. Sakr, D. Sapone, JCAP 03, 034 (2022)

    Article  ADS  Google Scholar 

  38. M. Ballardini, F. Finelli, D. Sapone, JCAP 06, 004 (2022)

    Article  ADS  Google Scholar 

  39. J. Alvey, N. Sabti, M. Escudero, M. Fairbairn, Eur. Phys. J. C 80, 148 (2020)

    Article  ADS  Google Scholar 

  40. J. Ponce de Leon, Class. Quantum Gravity 20, 5321–5341 (2003)

    Article  ADS  Google Scholar 

  41. J. Ponce de Leon, Int. J. Mod. Phys. D 12, 1053–1065 (2003)

    Article  ADS  Google Scholar 

  42. S. Nath, S. Chakraborty, U. Debnath, JCAP 11, 012 (2004)

    Article  ADS  Google Scholar 

  43. V.N. Melnikov, Front. Phys. China 4, 75–93 (2009)

    Article  ADS  Google Scholar 

  44. I. Ayuso, J.P. Mimoso, N.J. Nunes, Galaxies 7, 38 (2019)

    Article  ADS  Google Scholar 

  45. R. Dungan, H.B. Prosper, Am. J. Phys. 79, 57 (2011)

    Article  ADS  Google Scholar 

  46. R. Tolman, P. Ehrenfest, Phys. Rev. 36, 1791 (1930)

    Article  ADS  Google Scholar 

  47. D. Lemoine, M. Lemoine, Phys. Rev. D 52, 1955 (1995)

    Article  ADS  Google Scholar 

  48. A. Singh, R. Raushan, R. Chaubey, S. Mandal, K.C. Mishra, Int. J. Geom. Method Mod. Phys. 19, 2250107 (2022)

    Article  Google Scholar 

  49. A. Singh, Astrophys. Space Sci. 365, 54 (2020)

    Article  ADS  Google Scholar 

  50. A. Singh, R. Chaubey, Astrophys. Space Sci. 366, 15 (2021)

    Article  ADS  Google Scholar 

  51. E. Curiel, A Primer on Energy Conditions, in Towards a Theory of Spacetime Theories. Einstein Studiesd. ed. by D. Lehmkuhl, G. Schiemann, E. Scholz (Birkhauser, New York, 2017)

    Google Scholar 

  52. P.J.E. Peebles, B. Ratra, Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  Google Scholar 

  53. G. Ellis, R. Maartens, M.A.H. MacCallum, Gen. Relativ. Gravity 39, 1651 (2007)

    Article  ADS  Google Scholar 

  54. G.S. Sharov, V.O. Vasiliev, Math. Model. Geom. 6(1), 1–20 (2018)

    Article  Google Scholar 

  55. C. Zhang et al., Res. Astron. Astrophys. 14, 1221–1233 (2014)

    Article  ADS  Google Scholar 

  56. J. Simon, L. Verde, R. Jimenez, Phys. Rev. D 71, 123001 (2005)

    Article  ADS  Google Scholar 

  57. E. Gaztanaga, A. Cabre, L. Hui, Mon. Not. R. Astron. Soc. 399, 1663–1680 (2009)

    Article  ADS  Google Scholar 

  58. M. Moresco et al., J. Cosmol. Astropart. Phys. 8, 006 (2012)

    Article  ADS  Google Scholar 

  59. A.L. Ratsimbazafy et al., Mon. Not. R. Astron. Soc. 467, 3239–3254 (2017)

    Article  ADS  Google Scholar 

  60. M. Moresco, Mon. Not. R. Astron. Soc. Lett. 450, L16–L20 (2015)

    Article  ADS  Google Scholar 

  61. A. Oka et al., Mon. Not. R. Astron. Soc. 439, 2515–2530 (2014)

    Article  ADS  Google Scholar 

  62. Y. Wang et al., Mon. Not. R. Astron. Soc. 469, 3762–3774 (2017)

    Article  ADS  Google Scholar 

  63. S. Alam et al., Mon. Not. R. Astron. Soc. 470, 2617–2652 (2017)

    Article  ADS  Google Scholar 

  64. C. Blake et al., Mon. Not. R. Astron. Soc. 425, 405–414 (2012)

    Article  ADS  Google Scholar 

  65. C.-H. Chuang et al., Mon. Not. R. Astron. Soc. 433, 3559–3571 (2013)

    Article  ADS  Google Scholar 

  66. L. Anderson et al., Mon. Not. R. Astron. Soc. 441, 24 (2014)

    Article  ADS  Google Scholar 

  67. N.G. Busca et al., Astron. Astrophys. 552, A96 (2013)

    Article  Google Scholar 

  68. J.E. Bautista et al., Astron. Astrophys. 603, A12 (2017)

    Article  Google Scholar 

  69. M. Moresco, R. Jimenez, L. Verde, A. Cimatti, L. Pozzetti, Astrophys. J. 898, 82 (2020)

    Article  ADS  Google Scholar 

  70. M. Moresco et al., arXiv:2201.07241v1 [astro-ph.CO] (2022)

  71. D. Foreman-Mackey, D.W. Hogg, D. Lang, J. Goodman, Publ. Astron. Soc. Pac. 125, 306 (2013)

    Article  ADS  Google Scholar 

  72. P.A.R. Ade et al., Astron. Astrophys. 594, 13 (2016)

    Article  Google Scholar 

  73. U. Alam, V. Sahni, T.D. Saini, A.A. Starobinsky, Mon. Not. R. Astron. Soc. 344, 1057 (2003)

    Article  ADS  Google Scholar 

  74. A. Pradhan, A. Dixit, V.K. Bhardwaj, Int. J. Mod. Phys. A 36, 2150030 (2021)

    Article  ADS  Google Scholar 

  75. V.K. Bhardwaj, A. Dixit, A. Pradhan, New Astron. 88, 101623 (2021)

    Article  Google Scholar 

  76. U.K. Sharma, S. Srivastava, Mod. Phys. Lett. A 35, 2050318 (2020)

    Article  ADS  Google Scholar 

  77. A. Dixit, V.K. Bhardwaj, A. Pradhan, Eur. Phys. J. Plus 135, 831 (2020)

    Article  Google Scholar 

  78. V. Sahni, A. Shafieloo, A.A. Starobinsky, Phys. Rev. D 78, 103502 (2008)

    Article  ADS  Google Scholar 

  79. T. Singh, R. Chaubey, A. Singh, Eur. Phys. J. Plus 130, 31 (2015)

    Article  Google Scholar 

  80. J.P. Uzan, Rev. Mod. Phys. 75, 403 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to the honorable reviewer for detailed reading of our manuscript during the revision stages and highlighting different issues with suggestions for the modifications. AS is thankful to Prof. Saibal Ray for the fruitful discussions. SM express his sincere thanks to C.S.I.R., New Delhi, for providing financial support under CSIR (SRF) scheme through Award No. 09/013(0924)/2019-EMR-I. RC is thankful to ’Incentive Grant’ under IOE, BHU for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavendra Chaubey.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Singh, A. & Chaubey, R. Observational constraints and cosmological implications of NLE model with variable G. Eur. Phys. J. Plus 137, 1246 (2022). https://doi.org/10.1140/epjp/s13360-022-03471-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03471-3

Navigation