Skip to main content
Log in

Transient indicator of exploited communities at equilibrium in generalist predator–prey models

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Most research articles on the exploited predator–prey dynamics study the asymptotic profile of steady states, bistability, limit cycles and bifurcations. In these cases, the disturbances (harvesting) can lead to transient amplification before decaying asymptotically. Therefore, a deep understanding of transient dynamics near steady state is crucial to guessing the dynamics of interacting species for disturbances on short time scales. Here, we study this transient indicator to a generalist predator–prey system with Holling type III functional response. The disturbances are produced by different harvesting strategies, including prey harvesting, predator harvesting, and simultaneous harvesting of both species. In the case of the existence of unique interior equilibrium, the stable steady state becomes reactive. The results become complicated when the system becomes bistable in nature. Between two stable coexistence states, one becomes reactive, and another remains non-reactive. But it is observed that disturbance made by harvesting in our system affects the transient behavior of the system making it more stable in nature in every case compared to the unharvested system. We also observe that the MSY policy is suitable for prey and simultaneous harvesting of both species in comparison with predator harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability Statement

No data are associated with the manuscript.

References

  1. L.N. Guin, G. Mandal, M. Mondal, S. Chakravarty, A chaotic tri- trophic food chain model supplemented by Allee effect. Int. J. Dyn. Control, 1–27 (2022)

  2. S. Mondal, G.P. Samanta, J.J. Nieto, Dynamics of a predator-prey population in the presence of resource subsidy under the influence of nonlinear prey refuge and fear effect. Complexity. (2021)

  3. D. Das, D. Pal, T.K. Kar, K.S. Chaudhuri, Balanced harvesting in two predators one prey system. J. Appl. Math. Comput. 68(2), 839–861 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  4. M.G. Neubert, H. Caswell, Alternatives to resilience for measuring the responses of ecological systems to perturbations. Ecology 78(3), 653–665 (1997)

    Article  Google Scholar 

  5. X. Chen, J.E. Cohen, Global stability, local stability and permanence in model food webs. J. Theor. Biol. 212(2), 223–235 (2001)

    Article  ADS  Google Scholar 

  6. H. Caswell, M.G. Neubert, Reactivity and transient dynamics of discrete-time ecological systems. J. Differ. Equations Appl. 11(4–5), 295–310 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. G.R. Hosack, P.A. Rossignol, P. Van Den Driessche, The control of vector-borne disease epidemics. J. Theor. Biol. 255(1), 16–25 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. Hastings, K. C. Abbott, K. Cuddington, T. Francis, G. Gellner, Y.-C. Lai, A. Morozov, S. Petrovskii, K. Scranton, M. L. Zeeman, Transient phenomena in ecology. Science, 361(6406) (2018)

  9. R.E. Snyder, What makes ecological systems reactive? Theor. Popul. Biol. 77(4), 243–249 (2010)

    Article  MATH  Google Scholar 

  10. R. Vesipa, L. Ridolfi, Impact of seasonal forcing on reactive ecological systems. J. Theor. Biol. 419, 23–35 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. J. Dixon, A. Lindemann, J.H. McCoy, Transient amplification limits noise suppression in biochemical networks. Phys. Rev. E 93(1), 012415 (2016)

    Article  ADS  Google Scholar 

  12. B.F. Farrell, P.J. Ioannou, Generalized stability theory. Part I: Autonomous operators. J. Atmosph. Sci. 53(14), 2025–2040 (1996)

    Article  ADS  Google Scholar 

  13. J.H. McCoy, Amplification without instability: applying fluid dynamical insights in chemistry and biology. New J. Phys. 15(11), 113036 (2013)

    Article  ADS  Google Scholar 

  14. E.M. Bennett, G.D. Peterson, L.J. Gordon, Understanding relationships among multiple ecosystem services. Ecol. Lett. 12(12), 1394–1404 (2009)

    Article  Google Scholar 

  15. T.K. Kar, B. Ghosh, Impacts of maximum sustainable yield policy to prey–predator systems. Ecol. Model. 250, 134–142 (2013)

    Article  Google Scholar 

  16. J.R. Beddington, R.M. May, Maximum sustainable yields in systems subject to harvesting at more than one trophic level. Math. Biosci. 51(3–4), 261–281 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. E. Tromeur, D. Luc, Optimal biodiversity erosion in multispecies fisheries. Les Cahiers du GREThA-Groupe de Recherche en Économie Théorique et Appliquée(2016-20) (2016)

  18. M.B. Schaefer, Some aspects of the dynamics of populations important to the management of the commercial marine fisheries. Int. Am. Tropical Tuna Comm. Bull. 1(2), 23–56 (1954)

    Google Scholar 

  19. C.W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, 2nd edn. (John Wiley and Sons, New York, 1990)

    MATH  Google Scholar 

  20. B. Ghosh, T.K. Kar, T. Legovic, Relationship between exploitation, oscillation, MSY and extinction. Math. Biosci. 256, 1–9 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Legović, Impact of demersal fishery and evidence of the Volterra principle to the extreme in the Adriatic Sea. Ecol. Model. 212(1–2), 68–73 (2008)

    Article  Google Scholar 

  22. C.J. Walters, V. Christensen, S.J. Martell, J.F. Kitchell, Possible ecosystem impacts of applying MSY policies from single-species assessment. ICES J. Mar. Sci. 62(3), 558–568 (2005)

    Article  Google Scholar 

  23. H. Matsuda, P.A. Abrams, Maximal yields from multispecies fisheries systems: rules for systems with multiple trophic levels. Ecol. Appl. 16(1), 225–237 (2006)

    Article  Google Scholar 

  24. T. Legović, S. Gečcek, Impact of maximum sustainable yield on mutualistic communities. Ecol. Model. 230, 63–72 (2012)

    Article  Google Scholar 

  25. P. Majumdar, S. Debnath, S. Sarkar, U. Ghosh, The complex dynamical behavior of a prey-predator model with holling type-iii functional response and non-linear predator harvesting. Int. J. Model. Simul. 42(2), 287–304 (2022)

    Article  Google Scholar 

  26. A. Erbach, F. Lutscher, G. Seo, Bistability and limit cycles in generalist predator–prey dynamics. Ecol. Complex. 14, 48–55 (2013)

    Article  Google Scholar 

  27. P. Paul, T.K. Kar, E. Das, Reactivity in prey–predator models at equilibrium under selective harvesting efforts. Eur. Phys. J. Plus 136(5), 510 (2021)

    Article  Google Scholar 

  28. P. Paul, E. Das, T.K. Kar, Reactivity and recovery in an exploited one prey two predators system at equilibrium. Eur. Phys. J. Plus 136(11), 1148 (2021)

    Article  Google Scholar 

  29. M.L. Rosenzweig, Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171(3969), 385–387 (1971)

    Article  ADS  Google Scholar 

  30. A. Morozov, S. Petrovskii, Excitable population dynamics, biological control failure, and spatiotemporal pattern formation in a model ecosystem. Bull. Math. Biol. 71(4), 863–887 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. V.W. Rodrigues, D.C. Mistro, L.A.D. Rodrigues, Pattern formation and bistability in a generalist predator–prey model. Mathematics 8(1), 20 (2019)

    Article  Google Scholar 

  32. B. Ghosh, T.K. Kar, Maximum sustainable yield and species extinction in a prey–predator system: some new results. J. Biol. Phys. 39(3), 453–467 (2013)

    Article  Google Scholar 

  33. B. Ghosh, T.K. Kar, Possible ecosystem impacts of applying maximum sustainable yield policy in food chain models. J. Theor. Biol. 329, 6–14 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. G.R. Huxel, K. McCann, FoodWeb stability: The influence of trophic flows across habitats. Am. Nat. 152(3), 460–469 (1998)

    Article  Google Scholar 

  35. B. Sahoo, S. Poria, Effects of additional food in a delayed predator–prey model. Math. Biosci. 261, 62–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. P.D.N. Srinivasu, B.S.R.V. Prasad, M. Venkatesulu, Biological control through provision of additional food to predators: A theoretical study. Theor. Population Biol. 72(1), 111–120 (2007)

    Article  MATH  Google Scholar 

  37. B. Ghosh, D. Pal, T. Legović, T.K. Kar, Harvesting induced stability and instability in a tri-trophic food chain. Math. Biosci. 304, 89–99 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. E. Tromeur, N. Loeuille, Balancing yield with resilience and conservation objectives in harvested predator–prey communities. Oikos 126(12), 1780–1789 (2017)

    Article  Google Scholar 

  39. M.G. Neubert, T. Klanjscek, H. Caswell, Reactivity and transient dynamics of predator–prey and food web models. Ecol. Model. 179(1), 29–38 (2004)

    Article  Google Scholar 

  40. X. Wang, M. Efendiev, F. Lutscher, How spatial heterogeneity affects transient behavior in reaction-diffusion systems for ecological interactions? Bull. Math. Biol. 81(10), 3889–3917 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  41. W. Liu, J. Feng, Analysis of asymptotic and transient behaviors of stochastic ratio-dependent predator–prey model. Mathematics 9(21), 2776 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The work by Esita Das is financially supported by the Indian Institute of Engineering Science and Technology (IIEST), Shibpur, India (No. 1999/Exam, dated: October 01, 2021). The research of T.K. Kar is supported by the Council of Scientific and Industrial Research (CSIR) (NO.25(0300)/19/EMR-II, dated: May 16, 2019).

Author information

Authors and Affiliations

Authors

Contributions

This manuscript is prepared by Esita Das, Prosenjit Paul and T.K. Kar; Esita Das and Prosenjit Paul have taken the main role in designing the approach and performed the analysis and writing of the manuscript, with substantial input from T.K. Kar.

Corresponding author

Correspondence to Esita Das.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, E., Paul, P. & Kar, T.K. Transient indicator of exploited communities at equilibrium in generalist predator–prey models. Eur. Phys. J. Plus 137, 1221 (2022). https://doi.org/10.1140/epjp/s13360-022-03429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03429-5

Navigation