Skip to main content
Log in

A new approach for triply heavy \({{\varvec{\Omega}}}_{{\textbf{ccc}}}\) and \({{\varvec{\Omega}}}_{{{\textbf{bbb}}}}\) baryons spectroscopy in the nonrelativistic quark model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Triply heavy \({\Omega }_{\rm ccc}\) and \({\Omega }_{\mathrm{bbb}}\) baryons are studied in the framework of the nonrelativistic quark model based on the ansatz approach in hypercentral constituent quark model. The masses of the ground and excited states of the Ωccc and Ωbbb baryons are computed. In this study, the hypercentral potential is regarded as a combination of the color Coulomb plus linear confining term and the six-dimensional harmonic oscillator potential. Also, we added the first-order correction and the spin-dependent part contains three types of interaction terms (the spin–spin term, spin–orbit term and tensor term) to the hypercentral potential. The Regge trajectories for these baryons are plotted in (n, M2) and (J, M2) planes which are helpful to determine the unknown quantum number and JP values. A detailed comparison with previous calculations is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors declare that all other data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. R. Aaij et al., LHCb Collaboration. Phys. Rev. Lett. 119, 112001 (2017)

    Article  Google Scholar 

  2. K.A. Olive et al., Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

  3. R. Aaij et al., Phys. Rev. Lett. 122 (2019).

  4. Z.-G. Wang, Wang AAPPS Bulletin 31, 5 (2021)

    Article  Google Scholar 

  5. S.P. Baranov, V.L. Slad, Phys. Atom. Nucl. 67, 808 (2004)

    Article  Google Scholar 

  6. J. D. Bjorken, International Conference on Hadron Spectroscopy, Colleague Park, Maryland, USA, April 20–22, 1985, Preprint FERMILAB-Conf-85/69.

  7. Y. Q. Chen, S. Z. Wu, J. High Energy Phys. 08 (2011) 144; 09 89(E) (2011).

  8. H. He, Y. Liu, P. Zhuang, Phys. Lett. B 746, 59 (2015)

    Article  Google Scholar 

  9. P. Hasenfratz, R.R. Horgan, J. Kuti et al., Phys. Lett. 94B, 401 (1980)

    Article  Google Scholar 

  10. K.U. Can, G. Erkol, M. Oka, T.T. Takahashi, Phys. Rev. D 92, 114515 (2015)

    Article  Google Scholar 

  11. Z.S. Brown, W. Detmold, S. Meinel, K. Orginos, Phys. Rev. D 90, 094507 (2014)

    Article  Google Scholar 

  12. N. Mathur, M. Padmanath, S. Mondal, Phys. Rev. Lett. 121, 202002 (2018)

    Article  Google Scholar 

  13. G. Yang, J. Ping, P.G. Ortega, J. Segovia, Chin. Phys. C 44, 023102 (2020)

    Article  Google Scholar 

  14. K. Thakkar, A. Majethiya, P.C. Vinodkumar, Eur. Phys. J. Plus. 131, 339 (2016)

    Article  Google Scholar 

  15. Z. Shah, A.K. Rai, Eur. Phys. J. A 53, 195 (2017)

    Article  Google Scholar 

  16. M.S. Liu, Q.F. Lu, X.H. Zhong, Phys. Rev. D 101, 074031 (2020)

    Article  Google Scholar 

  17. S.X. Qin, C.D. Roberts, S.M. Schmidt, Few Body Syst. 60, 26 (2019)

    Article  Google Scholar 

  18. P.L. Yin, C. Chen, G. Krein, C.D. Roberts, J. Segovia, S.S. Xu, Phys. Rev. D 100, 034008 (2019)

    Article  Google Scholar 

  19. K.W. Wei, B. Chen, N. Liu, Q.Q. Wang, X.H. Guo, Phys. Rev. D 95, 116005 (2017)

    Article  Google Scholar 

  20. N. Salehi, Acta Physica Polonica B, Vol. 50 (2019).

  21. N. Salehi, A. A. Rajabi, Z. Ghalenovi, Acta Phys. Pol. B, Vol. 42 (2011).

  22. N. Salehi, N. Mohajery, Eur. Phys. J. Plus 133, 416 (2018)

    Article  Google Scholar 

  23. N. Mohajery, N. Salehi and H. Hassanabadi, Advances in High Energy Physics, Vol. 2018, (2018).

  24. K. Gandhi, Z. Shah, A.K. Rai, Eur. Phys. J. Plus 133(12), 1–9 (2018)

    Article  Google Scholar 

  25. N. Salehi, H. Hassanabadi, A.A. Rajabi, Eur. Phys. J. Plus 128, 27 (2013)

    Article  Google Scholar 

  26. H. Garcila, J. Vijande, A. Valcarce, J. Phys. G 34, 961 (2007); Eur. Phys. J. A 37, 27 (2008)

    Google Scholar 

  27. L.Y. Glozman, D.O. Riska, Phys. Rep. C 268, 263 (1996)

    Article  Google Scholar 

  28. Y. Koma, M. Koma, H. Wittig, Phys. Rev. Lett 97, 122003 (2006)

    Article  Google Scholar 

  29. N. Salehi, H. Hassanabadi, A. A. Rajabi, Chinese Physics C, Vol. 37, No. 11 (2013).

  30. Y. Koma, M. Koma, H. Wittig, Phys. Rev. Lett. 97, 122003 (2006)

    Article  Google Scholar 

  31. M.B. Voloshin, Prog. Part. Nucl. Phys. 51, 455 (2008)

    Article  Google Scholar 

  32. K. Thakkar, Z. Shah, A. K. Rai, P. C, Vinodkumar, N. Phys. A 12, 9 (2017).

  33. W. Lucha, F. Schoberls, Int. J. Mod. Phys. C. 10, 607 (1997)

    Article  Google Scholar 

  34. N. Salehi, H. Hassanabadi, Rom. Rep. Phys. 67, 403 (2015)

    Google Scholar 

  35. N. Salehi and H. Hassanabadi, Int. J. Mod. Phys. E, Vol. 24, No. 1 (2015).

  36. N. Salehi, Few-Body Syst 58, 132 (2017)

    Article  Google Scholar 

  37. N. Salehi, Adv. High Energy Phys. 2016, 5054620 (2016)

    Article  Google Scholar 

  38. E. Santopinto, Phys. Rev. C 72, 022201 (2005)

    Article  Google Scholar 

  39. A.A. Rajabi, N. Salehi, Iran. J. Phys. Res. 8, 169 (2008)

    Google Scholar 

  40. R.N. Faustov, V.O. Galkin, Phys. Rev. D 105, 014013 (2022)

    Article  Google Scholar 

  41. W. Roberts, M. Pervin, Int. J. Mod. Phys. A 23, 2817 (2008)

    Article  Google Scholar 

  42. Z. Shah, A. Kumar Rai, Chin. Phys. C 42, 053101 (2018).

  43. K.W. Wei, B. Chen, X.H. Guo, Phys. Rev. D 92, 076008 (2015)

    Article  Google Scholar 

  44. T.M. Aliev, K. Azizi, M. Savci, J. Phys. G 41, 065003 (2014)

    Article  Google Scholar 

  45. Z.G. Wang, Commun. Theor. Phys. 58, 723 (2012)

    Article  Google Scholar 

  46. M. Padmanath, R.G. Edwards, N. Mathur, M. Peardon, Phys. Rev. D 90, 074504 (2014)

    Article  Google Scholar 

  47. K. Serafin, M. Gómez-Rocha, J. More, S.D. Głazek, Eur. Phys. J. C 78, 964 (2018)

    Article  Google Scholar 

  48. S. Meinel, Phys. Rev. D 85, 114510 (2012)

    Article  Google Scholar 

  49. K.W. Wei, B. Chen, N. Liu, Q.Q. Wang, X.H. Guo, Phys. Rev. D 95(11), 116005 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

It is a great pleasure for authors to thank the kind referee for his/her many useful comments on the manuscript which have improved the present work.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Salehi.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, N., Abareshi, A. A new approach for triply heavy \({{\varvec{\Omega}}}_{{\textbf{ccc}}}\) and \({{\varvec{\Omega}}}_{{{\textbf{bbb}}}}\) baryons spectroscopy in the nonrelativistic quark model. Eur. Phys. J. Plus 137, 1298 (2022). https://doi.org/10.1140/epjp/s13360-022-03426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03426-8

Navigation