Skip to main content
Log in

Testing the scalar sector of the standard-model extension with neutron gravity experiments

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present study we analyse, within the scalar sector of the standard-model extension framework, the influence of a spontaneous Lorentz symmetry breaking on gravitational quantum states of ultracold neutrons. The model is framed according to the laboratory conditions of the recent high-sensitivity GRANIT and qBounce experiments. The high-precision data achieved in such experiments allow us to set bounds on the symmetry breaking parameters of the model. The effective Hamiltonian governing the neutron’s motion along the axis of free fall is derived explicitly. It describes a particle in a gravitational field with an effective gravitational constant controlled non-trivially by the Lorentz-violating parameters. In particular, using the exact wave functions and the energy spectrum, we evaluate both the heights associated with the quantum states and the transition frequencies between neighborhoring quantum states. By comparing our theoretical results with those reported in the GRANIT and the qBounce experiments, upper bounds on the Lorentz-violating parameters are determined. We also consider for the first time the gravity-induced interference pattern in a COW-type experiment to test Lorentz–invariance. In this case, an upper bound for the parameters is established as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

No datasets were generated or analyzed during the current study.

References

  1. D. Colladay, V.A. Kostelecký, CPT violation and the standard model. Phys. Rev. D. 55, 6760 (1997). https://doi.org/10.1103/PhysRevD.55.6760

    Article  ADS  Google Scholar 

  2. D. Colladay, V.A. Kostelecký, Lorentz-violating extension of the standard model. Phys. Rev. D. 58, 116002 (1998). https://doi.org/10.1103/PhysRevD.58.116002

    Article  ADS  Google Scholar 

  3. Q.G. Bailey, V.A. Kostelecký, Signals for Lorentz violation in post-Newtonian gravity. Phys. Rev. D. 74, 045001 (2006). https://doi.org/10.1103/PhysRevD.74.045001

    Article  ADS  Google Scholar 

  4. V.A. Kostelecký, J.D. Tasson, Matter-gravity couplings and Lorentz violation. Phys. Rev. D. 83, 016013 (2011). https://doi.org/10.1103/PhysRevD.83.016013

    Article  ADS  Google Scholar 

  5. V.A. Kostelecký, S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D. 39, 683 (1989). https://doi.org/10.1103/PhysRevD.39.683

    Article  ADS  Google Scholar 

  6. V.A. Kostelecký, R. Potting, CPT and strings. Nucl. Phys. B. 359, 545 (1991). https://doi.org/10.1016/0550-3213(91)90071-5

    Article  ADS  MathSciNet  Google Scholar 

  7. V.A. Kostelecký, N. Russell, Data tables for Lorentz and CPT violation. Rev. Mod. Phys. 83, 11 (2011). https://doi.org/10.1103/RevModPhys.83.11

    Article  ADS  Google Scholar 

  8. V.A. Kostelecký, M. Mewes, Signals for Lorentz violation in electrodynamics. Phys. Rev. D. 66, 056005 (2002). https://doi.org/10.1103/PhysRevD.66.056005

    Article  ADS  Google Scholar 

  9. Q.G. Bailey, V.A. Kostelecký, Lorentz-violating electrostatics and magnetostatics. Phys. Rev. D. 70, 076006 (2004). https://doi.org/10.1103/PhysRevD.70.076006

    Article  ADS  Google Scholar 

  10. A. Martín-Ruiz, C.A. Escobar, Casimir effect between ponderable media as modeled by the standard model extension. Phys. Rev. D. 94, 076010 (2016). https://doi.org/10.1103/PhysRevD.94.076010

    Article  ADS  Google Scholar 

  11. A. Martín-Ruiz, C.A. Escobar, Local effects of the quantum vacuum in Lorentz-violating electrodynamics. Phys. Rev. D. 95, 036011 (2017). https://doi.org/10.1103/PhysRevD.95.036011

    Article  ADS  Google Scholar 

  12. M.A. Hohensee, R. Lehnert, D.F. Phillips, R.L. Walsworth, Limits on isotropic Lorentz violation in QED from collider physics. Phys. Rev. D. 80, 036010 (2009). https://doi.org/10.1103/PhysRevD.80.036010

    Article  ADS  Google Scholar 

  13. R. Lehnert, R. Potting, Vacuum Čerenkov radiation. Phys. Rev. Lett. 93, 110402 (2004). https://doi.org/10.1103/PhysRevLett.93.110402

    Article  ADS  Google Scholar 

  14. R. Lehnert, R. Potting, Čerenkov effect in Lorentz-violating vacua. Phys. Rev. D. 70, 125010 (2004). https://doi.org/10.1103/PhysRevD.70.125010

    Article  ADS  Google Scholar 

  15. V.A. Kostelecký, A.G.M. Pickering, Vacuum photon splitting in Lorentz-violating quantum electrodynamics. Phys. Rev. Lett. 91, 031801 (2003). https://doi.org/10.1103/PhysRevLett.91.031801

    Article  ADS  Google Scholar 

  16. D. Colladay, J.P. Noordmans, R. Potting, Cosmic-ray fermion decay by emission of on-shell W bosons with CPT violation. Phys. Rev. D. 96, 035034 (2017). https://doi.org/10.1103/PhysRevD.96.035034

    Article  ADS  Google Scholar 

  17. A. Martín-Ruiz, M. Cambiaso, L.F. Urrutia, Green’s function approach to Chern-Simons extended electrodynamics: An effective theory describing topological insulators. Phys. Rev. D. 92, 125015 (2015). https://doi.org/10.1103/PhysRevD.92.125015

    Article  ADS  Google Scholar 

  18. A. Martín-Ruiz, M. Cambiaso, L.F. Urrutia, Electro- and magnetostatics of topological insulators as modeled by planar, spherical, and cylindrical \(\theta\) boundaries: Green’s function approach. Phys. Rev. D. 93, 045022 (2016). https://doi.org/10.1103/PhysRevD.93.045022

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Martín-Ruiz, M. Cambiaso, L.F. Urrutia, Electromagnetic description of three-dimensional time-reversal invariant ponderable topological insulators. Phys. Rev. D. 94, 085019 (2016). https://doi.org/10.1103/PhysRevD.94.085019

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Martín-Ruiz, M. Cambiaso, L.F. Urrutia, Electromagnetic fields induced by an electric charge near a Weyl semimetal. Phys. Rev. B. 99, 155142 (2019). https://doi.org/10.1103/PhysRevB.99.155142

    Article  ADS  Google Scholar 

  21. A.G. Grushin, Consequences of a condensed matter realization of Lorentz-violating QED in Weyl semi-metals. Phys. Rev. D. 86, 045001 (2012). https://doi.org/10.1103/PhysRevD.86.045001

    Article  ADS  Google Scholar 

  22. A. Gómez, A. Martín-Ruiz, L.F. Urrutia, Effective electromagnetic actions for Lorentz violating theories exhibiting the axial anomaly. Phys. Lett. B. 829, 137043 (2022). https://doi.org/10.1016/j.physletb.2022.137043

    Article  MathSciNet  MATH  Google Scholar 

  23. V.A. Kostelecký, R. Lehnert, N. McGinnis, M. Schreck, B. Seradjeh, Lorentz violation in Dirac and Weyl semimetals. Phys. Rev. Res. 4, 023106 (2022). https://doi.org/10.1103/PhysRevResearch.4.023106

    Article  Google Scholar 

  24. D.L. Anderson, M. Sher, I. Turan, title Lorentz and cpt violation in the higgs sector. Phys. Rev. D. 70, 016001 (2004). https://doi.org/10.1103/PhysRevD.70.016001

    Article  ADS  Google Scholar 

  25. S.M. Carroll, H. Tam, Aether compactification. Phys. Rev. D. 78, 044047 (2008). https://doi.org/10.1103/PhysRevD.78.044047

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Gomes, J.R. Nascimento, A.Y. Petrov, A.J. da Silva, Aetherlike lorentz-breaking actions. Phys. Rev. D. 81, 045018 (2010). https://doi.org/10.1103/PhysRevD.81.045018

    Article  ADS  Google Scholar 

  27. A. Ferrero, B. Altschul, Renormalization of scalar and yukawa field theories with lorentz violation. Phys. Rev. D. 84, 065030 (2011). https://doi.org/10.1103/PhysRevD.84.065030

    Article  ADS  Google Scholar 

  28. B. Altschul, Lorentz violation and the higgs mechanism. Phys. Rev. D. 86, 045008 (2012). https://doi.org/10.1103/PhysRevD.86.045008

    Article  ADS  Google Scholar 

  29. B.R. Edwards, V.A. Kostelecký, Riemann-Finsler geometry and Lorentz-violating scalar fields. Phys. Lett. B. 786, 319 (2018). https://doi.org/10.1016/j.physletb.2018.10.011

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. C.A. Escobar, L. Medel, A. Martín-Ruiz, Casimir effect in Lorentz-violating scalar field theory: A local approach. Phys. Rev. D. 101, 095011 (2020). https://doi.org/10.1103/PhysRevD.101.095011

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Martín-Ruiz, C.A. Escobar, A.M. Escobar-Ruiz, O.J. Franca, Lorentz violating scalar Casimir effect for a \({D}\)-dimensional sphere. Phys. Rev. D. 102, 015027 (2020). https://doi.org/10.1103/PhysRevD.102.015027

    Article  ADS  MathSciNet  Google Scholar 

  32. C.A. Escobar, A. Martín-Ruiz, O.J. Franca, M.A.G. Garcia, A non-perturbative approach to the scalar Casimir effect with Lorentz symmetry violation. Phys. Lett. B. 807, 135567 (2020). https://doi.org/10.1016/j.physletb.2020.135567

    Article  MathSciNet  MATH  Google Scholar 

  33. A.M. Escobar-Ruiz, A. Martín-Ruiz, C.A. Escobar, R. Linares, Scalar Casimir effect for a conducting cylinder in a Lorentz-violating background. Int. J. Mod. Phys. A. 36, 2150168 (2021). https://doi.org/10.1142/S0217751X21501682

    Article  ADS  MathSciNet  Google Scholar 

  34. J. Furtado, R.M.M. Costa Filho, A.F. Morais, I.C. Jardim, Effects of Lorentz violation in superconductivity. Europhys. Lett. 136(5), 51001 (2022)

    Article  ADS  Google Scholar 

  35. Z. Tian, J. Du, Probing low-energy Lorentz violation from high-energy modified dispersion in dipolar Bose-Einstein condensates. Phys. Rev. D. 103, 085014 (2021). https://doi.org/10.1103/PhysRevD.103.085014

    Article  ADS  MathSciNet  Google Scholar 

  36. A.R. Aguirre, G. Flores-Hidalgo, R.G. Rana, E.S. Souza, The Lorentz-violating real scalar field at thermal equilibrium. Eur. Phys. J. C. 81, 459 (2021). https://doi.org/10.1140/epjc/s10052-021-09250-1

    Article  ADS  Google Scholar 

  37. A.A.A. Filho, J.A.A.S. Reis, Thermal aspects of interacting quantum gases in Lorentz-violating scenarios. Eur. Phys. J. Plus. 136, 310 (2021). https://doi.org/10.1140/epjp/s13360-021-01289-z

    Article  Google Scholar 

  38. V.V. Nesvizhevsky, H.G. Börner, A.K. Petukhov, H. Abele, S. Baeßler, F.J. Rueß, T. Stöferle, A. Westphal, A.M. Gagarski, G.A. Petrov, A.V. Strelkov, Quantum states of neutrons in the Earth’s gravitational field. Nature. 415, 297 (2002). https://doi.org/10.1038/415297a

    Article  ADS  Google Scholar 

  39. G. Cronenberg, P. Brax, H. Filter, P. Geltenbort, T. Jenke, G. Pignol, M. Pitschmann, M. Thalhammer, H. Abele, Acoustic Rabi oscillations between gravitational quantum states and impact on symmetron dark energy. Nat. Phys. 14, 1022 (2018). https://doi.org/10.1038/s41567-018-0205-x

    Article  Google Scholar 

  40. R. Colella, A.W. Overhauser, S.A. Werner, Observation of gravitationally induced quantum interference. Phys. Rev. Lett. 34, 1472 (1975). https://doi.org/10.1103/PhysRevLett.34.1472

    Article  ADS  Google Scholar 

  41. V.A. Kostelecký, R. Lehnert, Stability, causality, and Lorentz and CPT violation. Phys. Rev. D. 63, 065008 (2001). https://doi.org/10.1103/PhysRevD.63.065008

    Article  ADS  MathSciNet  Google Scholar 

  42. Z. Chang, S. Wang, Lorentz invariance violation and electromagnetic field in an intrinsically anisotropic spacetime. Eur. Phys. J. C. 72, 2165 (2012). https://doi.org/10.1140/epjc/s10052-012-2165-0

    Article  ADS  Google Scholar 

  43. A. Zhang, Theoretical analysis of Casimir and thermal Casimir effect in stationary space-time. Phys. Lett. B. 773, 125 (2017). https://doi.org/10.1016/j.physletb.2017.08.012

    Article  ADS  MATH  Google Scholar 

  44. A. Martín-Ruiz, C.A. Escobar, Testing Lorentz and CPT invariance with ultracold neutrons. Phys. Rev. D. 97, 095039 (2018). https://doi.org/10.1103/PhysRevD.97.095039

    Article  ADS  Google Scholar 

  45. Z. Xiao, L. Shao, The CPT-violating effects on neutrons’ gravitational bound state. J. Phys. G. Nucl. Part. Phys. 47, 085002 (2020). https://doi.org/10.1088/1361-6471/ab8c30

    Article  ADS  Google Scholar 

  46. A.N. Ivanov, M. Wellenzohn, H. Abele, Title Probing of violation of Lorentz invariance by ultracold neutrons in the standard model extension. Phys. Lett. B. 797, 134819 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. C.A. Escobar, A. Martín-Ruiz, Gravitational searches for Lorentz violation with ultracold neutrons. Phys. Rev. D. 99, 075032 (2019). https://doi.org/10.1103/PhysRevD.99.075032

    Article  ADS  Google Scholar 

  48. A.N. Ivanov, M. Wellenzohn, H. Abele, Title Quantum gravitational states of ultracold neutrons as a tool for probing of beyond-Riemann gravity. Phys. Lett. B. 822, 136640 (2021)

    Article  MATH  Google Scholar 

  49. O. Vallée, M. Soares, Airy Functions and Applications to Physics ( publisher Imperial College Press, 2004) https://doi.org/10.1142/p345

  50. V.V. Nesvizhevsky, A.K. Petukhov, H.G. Börner, T.A. Baranova, A.M. Gagarski, G.A. Petrov, K.V. Protasov, A.Y. Voronin, S. Baeßler, H. Abele, A. Westphal, L. Lucovac, Study of the neutron quantum states in the gravity field. Eur. Phys. J. C. 40, 479 (2005). https://doi.org/10.1140/epjc/s2005-02135-y

    Article  ADS  Google Scholar 

  51. V.V. Nesvizhevsky, G. Pignol, K.V. Protasov, Neutron scattering and extra-short-range interactions. Phys. Rev. D. 77, 034020 (2008). https://doi.org/10.1103/PhysRevD.77.034020

    Article  ADS  Google Scholar 

  52. S. Baeßler, V.V. NesvizhevskY, G. Pignol, K.V. Protasov, A.Y. Voronin, Constraints on spin-dependent short-range interactions using gravitational quantum levels of ultracold neutrons, doi: Nuclear Instruments and Methods in Physics Research Section A: Accelerators. Spectrom. Detect. Assoc. Equip. 611, 149 (2009). https://doi.org/10.1016/j.nima.2009.07.048

    Article  Google Scholar 

  53. I. Antoniadis, S. Baessler, M. Büchner, V.V. Fedorov, S. Hoedl, A. Lambrecht, V.V. Nesvizhevsky, G. Pignol, K.V. Protasov, S. Reynaud, Y. Sobolev, Short-Range. Fundam. Forces. Comptes. Rendus. Phys. 12, 755 (2011). https://doi.org/10.1016/j.crhy.2011.05.004

    Article  ADS  Google Scholar 

  54. S. Baeßler, V.V. Nesvizhevsky, K.V. Protasov, A.Y. Voronin, Constraint on the coupling of axionlike particles to matter via an ultracold neutron gravitational experiment. Phys. Rev. D. 75, 075006 (2007). https://doi.org/10.1103/PhysRevD.75.075006

    Article  ADS  Google Scholar 

  55. Y.V. Borisov, N.V. Borovikava, A.V. Vasil‘ev, L.A. Grigor‘eva, S.N. Ivanov, N.T. Kashukeev, V.V. Nesvizhevskii, A.P. Serebrov, P.S. Yaidzhiev, On the feasibility of using ultracold neutrons to measure the electric charge of the neutron, @noop Sov. Phys. Tech. Phys. 33, 574 (1988)

    Google Scholar 

  56. A. Martín-Ruiz, A. Frank, L.F. Urrutia, Analysis of the quantum bouncer using polymer quantization. Phys. Rev. D. 92, 045018 (2015). https://doi.org/10.1103/PhysRevD.92.045018

    Article  ADS  MathSciNet  Google Scholar 

  57. H. Abele, T. Jenke, H. Leeb, J. Schmiedmayer, title Ramsey’s method of separated oscillating fields and its application to gravitationally induced quantum phase shifts. Phys. Rev. D. 81, 065019 (2010). https://doi.org/10.1103/PhysRevD.81.065019

    Article  ADS  Google Scholar 

  58. V.A. Kostelecký, M. Mewes, Signals for Lorentz violation in electrodynamics. Phys. Rev. D. 66, 056005 (2002). https://doi.org/10.1103/PhysRevD.66.056005

    Article  ADS  Google Scholar 

  59. Y. Ding, V.A. Kostelecký, Lorentz-violating spinor electrodynamics and Penning traps. Phys. Rev. D. 94, 056008 (2016). https://doi.org/10.1103/PhysRevD.94.056008

    Article  ADS  Google Scholar 

  60. O. Bertolami, Testing the baryon number or hypercharge interaction with a neutron interferometric device. Mod. Phys. Lett. A. 01, 383 (1986). https://doi.org/10.1142/S0217732386000476

    Article  ADS  Google Scholar 

  61. A. Saha, Colella-Overhauser-Werner test of the weak equivalence principle: A low-energy window to look into the noncommutative structure of space-time? Phys. Rev. D. 89, 025010 (2014). https://doi.org/10.1103/PhysRevD.89.025010

    Article  ADS  Google Scholar 

  62. X. Li, L. Yi, S. You-Gen, L. Cheng-Zhou, H. Hong-Sheng, X. Lan-Fang, Generalized uncertainty principles, effective Newton constant and the regular black hole. Ann. Phys. 396, 334 (2018). https://doi.org/10.1016/j.aop.2018.07.021

    Article  ADS  MathSciNet  Google Scholar 

  63. N. Farahani, H. Hassanabadi, J. Kříž, W.S. Chung, S. Zarrinkamar, DSR-GUP black hole based on COW experiment and Einstein-Bohr’s photon box. Eur. Phys. J. C. 80, 696 (2020). https://doi.org/10.1140/epjc/s10052-020-8270-6

    Article  ADS  Google Scholar 

  64. J.L. Staudenmann, S.A. Werner, R. Colella, A.W. Overhauser, Gravity and inertia in quantum mechanics. Phys. Rev. A. 21, 1419 (1980). https://doi.org/10.1103/PhysRevA.21.1419

    Article  ADS  Google Scholar 

  65. U. Bonse, T. Wroblewski, Measurement of neutron quantum interference in noninertial frames. Phys. Rev. Lett. 51, 1401 (1983). https://doi.org/10.1103/PhysRevLett.51.1401

    Article  ADS  Google Scholar 

  66. U. Bonse, T. Wroblewski, Dynamical diffraction effects in noninertial neutron interferometry. Phys. Rev. D. 30, 1214 (1984). https://doi.org/10.1103/PhysRevD.30.1214

    Article  ADS  Google Scholar 

  67. S. Werner, H. Kaiser, M. Arif, and R. Clothier, Neutron interference induced by gravity: New results and interpretations, Physica B+C 151, 22 (1988) https://doi.org/10.1016/0378-4363(88)90141-6

  68. K.C. Littrell, B.E. Allman, S.A. Werner, Two-wavelength-difference measurement of gravitationally induced quantum interference phases. Phys. Rev. A. 56, 1767 (1997). https://doi.org/10.1103/PhysRevA.56.1767

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A. M.-R. acknowledges support from DGAPA-UNAM Project No. IA102722 and by Project CONACyT (México) No. 428214. C. A. E. is supported from Project PAPIIT No. IN109321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Martín-Ruiz.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escobar, C.A., Martín-Ruiz, A., Escobar-Ruiz, A.M. et al. Testing the scalar sector of the standard-model extension with neutron gravity experiments. Eur. Phys. J. Plus 137, 1186 (2022). https://doi.org/10.1140/epjp/s13360-022-03412-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03412-0

Navigation