Skip to main content
Log in

Seeley–DeWitt expansion of scattering phase shift

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we use the Seeley–DeWitt expansion of heat kernel method in quantum field theory to give an explicit expression of the perturbation expansion for the scattering phase shift for three-dimensional spherically symmetric potential scattering in quantum mechanics. The spectral function is defined by the eigenproblem of an operator, and the spectral functions are related by transforms. The heat kernel and the scattering phase shift are both spectral functions of the Hamiltonian. By a transform between the heat kernel and the scattering phase shift, we convert the Seeley–DeWitt expansion of heat kernels to an expansion of scattering phase shifts up to the first two orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Date Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. H. Friedrich, Scattering Theory (Springer, Berlin Heidelberg, 2015)

    Google Scholar 

  2. H. Pang, W.-S. Dai, M. Xie, Relation between heat kernel method and scattering spectral method. The European Physical Journal C 72(5), 1–13 (2012)

    Article  Google Scholar 

  3. W.-D. Li, W.-S. Dai, Heat-kernel approach for scattering. Eur. Phys. J. C 75(6), 294 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  4. D.V. Vassilevich, Heat kernel expansion: user’s manual. Phys. Rep. 388(5), 279–360 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. A. Barvinsky, G. Vilkovisky, The generalized Schwinger–DeWitt technique in gauge theories and quantum gravity. Phys. Rep. 119(1), 1–74 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Barvinsky, G. Vilkovisky, Beyond the Schwinger–DeWitt technique: converting loops into trees and in-in currents. Nucl. Phys. B 282, 163–188 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  7. A. Barvinsky, G. Vilkovisky, Covariant perturbation theory (ii). second order in the curvature. general algorithms. Nucl. Phys. B 333(2), 471–511 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Barvinsky, G. Vilkovisky, Covariant perturbation theory (iii). spectral representations of the third-order form factors. Nucl. Phys. B 333(2), 512–524 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  9. I. Avramidi, The nonlocal structure of the one-loop effective action via partial summation of the asymptotic expansion. Phys. Lett. B 236(4), 443–449 (1990)

    Article  ADS  Google Scholar 

  10. Y.V. Gusev, Heat kernel expansion in the covariant perturbation theory. Nucl. Phys. B 807(3), 566–590 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. I.G. Avramidi, Heat Kernel Method and its Applications (Springer, New York, 2015)

    Book  MATH  Google Scholar 

  12. V. Mukhanov, S. Winitzki, Introduction to Quantum Effects in Gravity (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  13. Y.-Z. Gou, W.-D. Li, P. Zhang, W.-S. Dai, Covariant perturbation expansion of off-diagonal heat kernel. Int. J. Theor. Phys. 55(7), 3400–3413 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Barvinsky, Y.V. Gusev, G. Vilkovisky, V. Zhytnikov, Asymptotic behaviors of the heat kernel in covariant perturbation theory. J. Math. Phys. 35(7), 3543–3559 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. I.G. Avramidi, Heat kernel approach in quantum field theory. Nuclear Phys. B Proc. Suppl. 104(1–3), 3–32 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Fulling, Systematics of the relationship between vacuum energy calculations and heat-kernel coefficients. J. Phys. A Math. Gen. 36(24), 6857 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. L. Salcedo, Covariant derivative expansion of the heat kernel. Eur. Phys. J. C-Part. Fields 37(4), 511–523 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. G. Vilkovisky, Backreaction of the hawking radiation. Phys. Lett. B 638(5–6), 523–525 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. G. Vilkovisky, Radiation equations for black holes. Phys. Lett. B 634(5–6), 456–464 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. A. Barvinsky, Y.V. Gusev, V.F. Mukhanov, D. Nesterov, Nonperturbative late time asymptotics for the heat kernel in gravity theory. Phys. Rev. D 68(10), 105003 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  21. Y.V. Gusev, The method of the kernel of the evolution equation in the theory of gravity. Phys. Part. Nucl. Lett. 18(1), 1–4 (2021)

    Article  MathSciNet  Google Scholar 

  22. A. Barvinsky, D. Nesterov, Schwinger–DeWitt technique for quantum effective action in brane induced gravity models. Phys. Rev. D 81(8), 085018 (2010)

    Article  ADS  Google Scholar 

  23. B.L. Altshuler, Sakharov’s induced gravity on the ads background: Sm scale as inverse mass parameter of the Schwinger–DeWitt expansion. Phys. Rev. D 92(6), 065007 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Bhattacharyya, B. Panda, A. Sen, Heat kernel expansion and extremal Kerr-Newmann black hole entropy in Einstein–Maxwell theory. J. High Energy Phys. 2012(8), 1–11 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Karan, B. Panda, Generalized Einstein–Maxwell theory: Seeley–DeWitt coefficients and logarithmic corrections to the entropy of extremal and nonextremal black holes. Phys. Rev. D 104(4), 046010 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  26. G. Banerjee, B. Panda, Logarithmic corrections to the entropy of non-extremal black holes in \({\cal{N} }= 1\) Einstein–Maxwell supergravity. J. High Energy Phys. 2021(11), 1–35 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Karan, S. Kumar, B. Panda, General heat kernel coefficients for massless free spin-3/2 Rarita–Schwinger field. Int. J. Mod. Phys. A 33(11), 1850063 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. S. Karan, B. Panda, Logarithmic corrections to black hole entropy in matter coupled \({\cal{N} } \ge 1\) Einstein–Maxwell supergravity. J. High Energy Phys. 2021(5), 1–45 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Karan, G. Banerjee, B. Panda, Seeley–Dewitt coefficients in \({\cal{N} }=2\) Einstein–Maxwell supergravity theory and logarithmic corrections to \({\cal{N} }=2\) extremal black hole entropy. J. High Energy Phys. 2019(8), 1–34 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. W.-S. Dai, M. Xie, An approach for the calculation of one-loop effective actions, vacuum energies, and spectral counting functions. J. High Energy Phys. 2010(6), 1–29 (2010)

    Article  ADS  MATH  Google Scholar 

  31. W.-S. Dai, M. Xie, The number of eigenstates: counting function and heat kernel. J. High Energy Phys. 2009(02), 033 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. C.-C. Zhou, W.-S. Dai, Calculating eigenvalues of many-body systems from partition functions. J. Stat. Mech. Theory Exp. 2018(8), 083103 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. H.-D. Li, S.-L. Li, Y.-J. Chen, W.-D. Li, W.-S. Dai, Energy spectrum of interacting gas: cluster expansion method. Chem. Phys. 559, 111537 (2022)

    Article  Google Scholar 

  34. T. Liu, W.-D. Li, W.-S. Dai, Scattering theory without large-distance asymptotics. J. High Energy Phys. 2014(6), 1–12 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. W.-D. Li, W.-S. Dai, Scattering theory without large-distance asymptotics in arbitrary dimensions. J. Phys. A Math. Theor. 49(46), 465202 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. J. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions (Dover Books on Engineering, Dover Publications, 2006)

    Google Scholar 

  37. R. Newton, Scattering Theory of Waves and Particles (Springer, Berlin Heidelberg, 2014)

  38. D. Belkić, Principles of Quantum Scattering Theory (CRC Press, USA, 2020)

    Book  Google Scholar 

  39. E. Pike, P. Sabatier, Scattering and inverse scattering in Pure and Applied Science, Two-Volume Set (Elsevier Science, United Kingdom, 2001)

    MATH  Google Scholar 

  40. P.D. Lax, R.S. Phillips, Scattering Theory: Pure and Applied Mathematics, vol. 26 (Elsevier, Amsterdam, 2016)

    Google Scholar 

  41. K. Chadan, R. Newton, P. Sabatier, Inverse Problems in Quantum Scattering Theory (Springer, Berlin Heidelberg, 2013)

  42. Z. Agranovich, V. Marchenko, The Inverse Problem of Scattering Theory (Dover Books on Physics, Dover Publications, 2020)

    MATH  Google Scholar 

  43. K. Takayanagi, M. Oishi, Inverse scattering problem and generalized optical theorem. J. Math. Phys. 56(2), 022101 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. T. Rescigno, C. McCurdy, Numerical grid methods for quantum-mechanical scattering problems. Phys. Rev. A 62(3), 032706 (2000)

    Article  ADS  Google Scholar 

  45. K. Willner, F.A. Gianturco, Low-energy expansion of the jost function for long-range potentials. Phys. Rev. A 74(5), 052715 (2006)

    Article  ADS  Google Scholar 

  46. F. Arnecke, J. Madronero, H. Friedrich, Jost functions and singular attractive potentials. Phys. Rev. A 77(2), 022711 (2008)

    Article  ADS  Google Scholar 

  47. F. Arnecke, H. Friedrich, J. Madronero, Effective-range theory for quantum reflection amplitudes. Phys. Rev. A 74(6), 062702 (2006)

    Article  ADS  Google Scholar 

  48. D. Colton , R. Kress, Integral Equation Methods in Scattering Theory. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), (2013)

  49. A. Kadyrov, I. Bray, A. Mukhamedzhanov, A. Stelbovics, Surface-integral formulation of scattering theory. Ann. Phys. 324(7), 1516–1546 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. I. Hornyak, A. Kruppa, Coulomb-distorted plane wave: Partial wave expansion and asymptotic forms. J. Math. Phys. 54(5), 053502 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. G. Gasaneo, L. Ancarani, Treatment of the two-body coulomb problem as a short-range potential. Phys. Rev. A 80(6), 062717 (2009)

    Article  ADS  Google Scholar 

  52. M. Metaxas, P. Schmelcher, F. Diakonos, Symmetry-induced nonlocal divergence-free currents in two-dimensional quantum scattering. Phys. Rev. A 103(3), 032203 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  53. S. Bharadwaj, L. Ram-Mohan, Electron scattering in quantum waveguides with sources and absorbers. ii. applications. J. Appl. Phys. 125(16), 164307 (2019)

    Article  ADS  Google Scholar 

  54. A.A. Bytsenko, G. Cognola, V. Moretti, S. Zerbini, E. Elizalde, Analytic Aspects of Quantum Fields (World Scientific, Singapore, 2003)

    Book  MATH  Google Scholar 

  55. Z.-Q. Ma, The Levinson theorem. J. Phys. A Math. Gen. 39(48), R625 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. J. Kellendonk, S. Richard, The topological meaning of Levinson’s theorem, half-bound states included. J. Phys. A Math. Theor. 41(29), 295207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  57. C.J. Joachain, Quantum Collision Theory (North-Holland, Amsterdam, 1975)

    Google Scholar 

  58. M. Antoine, A. Comtet, M. Knecht, Heat kernel expansion for fermionic billiards in an external magnetic field. J. Phys. A Math. Gen. 23(1), L35 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. R. Narevich, D. Spehner, E. Akkermans, Heat kernel of integrable billiards in a magnetic field. J. Phys. A Math. Gen. 31(18), 4277 (1998)

    Article  ADS  MATH  Google Scholar 

  60. M. Bordag, I. Pirozhenko, Heat kernel coefficients for the dielectric cylinder. Phys. Rev. D 64(2), 025019 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  61. W. Donnelly, A.C. Wall, Entanglement entropy of electromagnetic edge modes. Phys. Rev. Lett. 114(11), 111603 (2015)

    Article  ADS  Google Scholar 

  62. W.-D. Li, Y.-Z. Chen, W.-S. Dai, Scalar scattering in schwarzschild spacetime: Integral equation method. Phys. Lett. B 786 (2018)

  63. W.-D. Li, Y.-Z. Chen, W.-S. Dai, Scattering state and bound state of scalar field in Schwarzschild spacetime: exact solution. Ann. Phys. 409, 167919 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  64. M.Y. Kuchiev, V. Flambaum, Scattering of scalar particles by a black hole. Phys. Rev. D 70(4), 044022 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  65. B. Raffaelli, A scattering approach to some aspects of the Schwarzschild black hole. J. High Energy Phys. 2013(1), 1–18 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  66. L.C. Crispino, S.R. Dolan, E.S. Oliveira, Scattering of massless scalar waves by Reissner–Nordström black holes. Phys. Rev. D 79(6), 064022 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  67. L.C. Crispino, S.R. Dolan, A. Higuchi, E.S. de Oliveira, Scattering from charged black holes and supergravity. Phys. Rev. D 92(8), 084056 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  68. S.-L. Li, Y.-Y. Liu, W.-D. Li, W.-S. Dai, Scalar field in Reissner–Nordström spacetime: bound state and scattering state (with appendix on eliminating oscillation in partial sum approximation of periodic function). Ann. Phys. 432, 168578 (2021)

    Article  MATH  Google Scholar 

  69. S. Hod, Scattering by a long-range potential. J. High Energy Phys. 2013(9), 1–11 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  70. T. Barford, M.C. Birse, Renormalization group approach to two-body scattering in the presence of long-range forces. Phys. Rev. C 67(6), 064006 (2003)

    Article  ADS  Google Scholar 

  71. P. Roux, D. Yafaev, The scattering matrix for the Schrödinger operator with a long-range electromagnetic potential. J. Math. Phys. 44(7), 2762–2786 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. A. Kadyrov, I. Bray, A. Mukhamedzhanov, A. Stelbovics, Scattering theory for arbitrary potentials. Phys. Rev. A 72(3), 032712 (2005)

    Article  ADS  MATH  Google Scholar 

  73. W.-D. Li, W.-S. Dai, Long-range potential scattering: converting long-range potential to short-range potential by tortoise coordinate. J. Math. Phys. 62(12), 122102 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. W.-D. Li, W.-S. Dai, Duality family of scalar field. Nucl. Phys. B 972, 115569 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  75. S. Chandrasekhar, Newton’s Principia for the Common Reader (Clarendon Press, Oxford, 1995)

    MATH  Google Scholar 

  76. V. Arnold, K. Vogtmann, A. Weinstein, Mathematical Methods of Classical Mechanics (Springer, New York, 2013)

  77. V. Arnold, Huygens, Barrow, Newton and Hooke: Pioneers in Mathematical Analysis and Catastrophe Theory from Evolvents to Quasicrystals (Birkhäuser, Basel, 1990)

    Book  Google Scholar 

  78. T. Needham, Visual Complex Analysis (Oxford University Press, Oxford, 1998)

    MATH  Google Scholar 

  79. T. Needham, Newton and the transmutation of force. Am. Math. Mon. 100(2), 119–137 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  80. R.W. Hall, K. Josic, Planetary motion and the duality of force laws. SIAM Rev. 42(1), 115–124 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. S.-L. Li, Y.-J. Chen, Y.-Y. Liu, W.-D. Li, W.-S. Dai, Solving eigenproblem by duality transform. Ann. Phys. 443, 168962 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  82. Y.-J. Chen, S.-L. Li, W.-D. Li, W.-S. Dai, An indirect approach for quantum-mechanical eigenproblems: duality transforms. Commun. Theor. Phys. 74(5), 055103 (2022)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very indebted to Dr G. Zeitrauman for his encouragement. This work is supported in part by Special Funds for theoretical physics Research Program of the NSFC under Grant No. 11947124, and NSFC under Grant Nos. 11575125 and 11675119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu-Sheng Dai.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YY., Chen, YJ., Li, SL. et al. Seeley–DeWitt expansion of scattering phase shift. Eur. Phys. J. Plus 137, 1140 (2022). https://doi.org/10.1140/epjp/s13360-022-03380-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03380-5

Navigation