Skip to main content
Log in

Black holes in Einstein–Gauss–Bonnet gravity with a background of modified Chaplygin gas

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Supposing the existence of modified Chaplygin gas with the equation of state \(p=A\rho -B/\rho ^\beta\) as a cosmic background, we obtain a static spherically symmetric solution to the Einstein–Gauss–Bonnet gravitational equations in 5D spacetime. The spacetime structure of the obtained black hole solution could be asymptotically anti-de Sitter or de Sitter, according to the specific values of modified Chaplygin gas parameters versus the cosmological constant. We analyze the parametric regions for both kinds of solutions. For asymptotically anti-de Sitter black hole, there exists the so-called small/large black hole phase transition, and we obtain critical values of pressure, volume and temperature and investigate the effects of both the Gauss–Bonnet gravity and the modified Chaplygin gas on these values. For asymptotically de Sitter black hole, no \(P-r_{\mathrm{h}}\) criticality and phase transition appear, and we show that the thermodynamic systems related to various horizons of asymptotically de Sitter black hole are in fact entangled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

There are no data associated in the manuscript.

References

  1. D. Lovelock, The Einstein tensor and its generalizations. J. Math. Phys. 12, 498 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. D. Lovelock, The four-dimensionality of space and the Einstein tensor. J. Math. Phys. 13, 874 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. B. Zwiebach, Curvature squared terms and string theories. Phys. Lett. B 156, 315 (1985)

    Article  ADS  Google Scholar 

  4. D.J. Gross, E. Witten, Superstring modifications of Einstein’s equations. Nucl. Phys. B 277, 1 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  5. R.R. Metsaev, A.A. Tseytlin, Two-loop \(\beta\)-function for the generalized bosonic sigma model. Phys. Lett. B 191, 354 (1987)

    Article  ADS  Google Scholar 

  6. R.R. Metsaev, A.A. Tseytlin, Curvature cubed terms in string theory effective actions. Phys. Lett. B 185, 52 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  7. K.S. Stelle, Classical gravity with higher derivatives. Gen. Relat. Gravit. 9, 353 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  8. J.W. Maluf, Conformal invariance and torsion in general relativity. Gen. Relat. Gravit. 19, 57 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. M. Farhoudi, On higher order gravities, their analogy to GR, and dimensional dependent version of Duff’s trace anomaly relation. Gen. Rel. Grav. 38, 1261 (2006). arXiv: physics/0509210

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. D.G. Boulware, S. Deser, String-generated gravity models. Phys. Rev. Lett. 55, 2656 (1985)

    Article  ADS  Google Scholar 

  11. B. Zumino, Gravity theories in more than four dimensions. Phys. Rept. 137, 109 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  12. R.C. Myers, Superstring gravity and black holes. Nucl. Phys. B 289, 701 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  13. C.G. Callan Jr., R.C. Myers, M.J. Perry, Black holes in string theory. Nucl. Phys. B 311, 673 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  14. Y.M. Cho, I.P. Neupane, P.S. Wesson, No ghost state of Gauss-Bonnet interaction in warped background. Nucl. Phys. B 621, 388 (2002). arXiv: hep-th/0104227

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. R.G. Cai, Gauss-Bonnet black holes in AdS spaces. Phys. Rev. D 65, 084014 (2002). arXiv: hep-th/0109133

    Article  ADS  MathSciNet  Google Scholar 

  16. J.T. Wheeler, Symmetric solutions to the Gauss–Bonnet extended Einstein equations. Nucl. Phys. B 268, 737 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Y.M. Cho, I.P. Neupane, Anti-de Sitter Black holes, thermal phase transition and holography in higher curvature gravity. Phys. Rev. D 66, 024044 (2002). [arXiv: hep-th/0202140]

    Article  ADS  MathSciNet  Google Scholar 

  18. R.G. Cai, Q. Guo, Gauss-bonnet black holes in ds spaces. Phys. Rev. D 69, 104025 (2004). [arXiv: hep-th/0311020]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. G. Dotti, J. Oliva, R. Troncoso, Exact solutions for the Einstein–Gauss–Bonnet theory in five dimensions: black holes, wormholes and spacetime horns. Phys. Rev. D 76, 064038 (2007). [arXiv: hep-ph/0706.1830]

    Article  ADS  MathSciNet  Google Scholar 

  20. D.D. Doneva, S.S. Yazadjiev, New Gauss–Bonnet Black holes with curvature-induced scalarization in extended scalar–tensor theories. Phys. Rev. Lett. 120, 131103 (2018). [arXiv: gr-qc/1711.01187]

    Article  ADS  MATH  Google Scholar 

  21. H.O. Silva, J. Sakstein, L. Gualtieri, T.P. Sotiriou, E. Berti, Spontaneous scalarization of black holes and compact stars from a Gauss–Bonnet coupling. Phys. Rev. Lett. 120, 131104 (2018). [arXiv: gr-qc/1711.02080]

    Article  ADS  Google Scholar 

  22. J.L. Blzquez-Salcedo, D.D. Doneva, J. Kunz, S.S. Yazadjiev, Radial perturbations of the scalarized Einstein–Gauss–Bonnet black holes. Phys. Rev. D 98, 084011 (2018). [arXiv: gr-qc/1805.05755]

    Article  ADS  MathSciNet  Google Scholar 

  23. C.F.B. Macedo, J. Sakstein, E. Berti, L. Gualtieri, H.O. Silva, T.P. Sotiriou, Self-interactions and spontaneous black hole scalarization. Phys. Rev. D 99, 104041 (2019). [arXiv: gr-qc/1903.06784]

    Article  ADS  MathSciNet  Google Scholar 

  24. D.D. Doneva, K.V. Staykov, S.S. Yazadjiev, Gauss–Bonnet black holes with a massive scalar field. Phys. Rev. D 99, 104045 (2019). [arXiv: gr-qc/1903.08119]

    Article  ADS  MathSciNet  Google Scholar 

  25. N. Aghanim [Planck Collaboration], Planck, et al. Results (VI, Cosmological parameters, 2018). [arXiv: astro-ph/1807.06209]

  26. V.V. Kiselev, Quintessence and black holes. Class. Quant. Grav. 20, 1187 (2003). [arXiv: gr-qc/0210040]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. C.R. Ma, Y.X. Gui, F.J. Wang, Quintessence contribution to a Schwarzschild black hole entropy. Chin. Phys. Lett. 24, 3286 (2007)

    Article  ADS  Google Scholar 

  28. S. Fernando, Schwarzschild black hole surrounded by quintessence: Null geodesics. Gen. Rel. Grav. 44, 1857 (2012). [arXiv: gr-qc/1202.1502]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Z. Feng, L. Zhang, X. Zu, The remnants in Reissner–Nordstr\(\ddot{o}\)m-de Sitter quintessence black hole. Mod. Phys. Lett. A 29, 1450123 (2014)

    Article  ADS  MATH  Google Scholar 

  30. B. Malakolkalami, K. Ghaderi, Schwarzschild-anti de Sitter black hole with quintessence. Astrophys. Space Sci. 357, 112 (2015)

    Article  ADS  Google Scholar 

  31. I. Hussain, S. Ali, Effect of quintessence on the energy of the Reissner–Nordstr\(\ddot{o}\)m black hole. Gen. Rel. Grav. 47, 34 (2015). [arXiv: gr-qc/1408.3111]

    Article  ADS  Google Scholar 

  32. S.G. Ghosh, M. Amir, S.D. Maharaj, Quintessence background for 5D Einstein–Gauss–Bonnet black holes. Eur. Phys. J. C 77, 530 (2017). [arXiv: gr-qc/1611.02936]

    Article  ADS  Google Scholar 

  33. S.G. Ghosh, S.D. Maharaj, D. Baboolal, T.H. Lee, Lovelock black holes surrounded by quintessence. Eur. Phys. J. C 78, 90 (2018). [arXiv: gr-qc/1708.03884]

    Article  ADS  Google Scholar 

  34. J. de M. Toledo, V. B. Bezerra, Black holes with cloud of strings and quintessence in Lovelock gravity. Eur. Phys. J. C 78, 534 (2018)

  35. A.E. Dominguez, E. Gallo, Radiating black hole solutions in Einstein–Gauss–Bonnet gravity. Phys. Rev. D 73, 064018 (2006). [arXiv: gr-qc/0512150]

    Article  ADS  MathSciNet  Google Scholar 

  36. D. Wiltshire, Black holes in string-generated gravity models. Phys. Rev. D 38, 2445 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  37. H. Maeda, M. Hassaine, C. Martinez, Lovelock black holes with a nonlinear Maxwell field. Phys. Rev. D 79, 044012 (2009). [arXiv: gr-qc/0812.2038]

    Article  ADS  Google Scholar 

  38. S.H. Hendi, S. Panahiyan, E. Mahmoudi, Thermodynamic analysis of topological black holes in Gauss–Bonnet gravity with nonlinear source. Eur. Phys. J. C 74, 3079 (2014). [arXiv: gr-qc/1406.2357]

    Article  ADS  Google Scholar 

  39. S. Habib Mazharimousavi, M. Halilsoy, 5D black hole solution in Einstein-Yang-Mills-Gauss-Bonnet theory. Phys. Rev. D 76, 087501 (2007) [arXiv: gr-qc/0801.1562]

  40. E. Herscovich, M.G. Richarte, Black holes in Einstein–Gauss–Bonnet gravity with a string cloud background. Phys. Lett. B 689, 192 (2010). [arXiv: hep-th/1004.3754]

    Article  ADS  MathSciNet  Google Scholar 

  41. A.Y. Kamenshchik, U. Moschella, V. Pasquier, An alternative to quintessence. Phys. Lett. B 511, 265 (2001). [arXiv: gr-qc/0103004]

    Article  ADS  MATH  Google Scholar 

  42. N. Bilic, G.B. Tupper, R.D. Viollier, Unification of dark matter and dark energy: the Inhomogeneous Chaplygin gas. Phys. Lett. B 535, 17 (2002). [arXiv: astro-ph/0111325]

    Article  ADS  MATH  Google Scholar 

  43. M.C. Bento, O. Bertolami, A.A. Sen, Generalized Chaplygin gas, accelerated expansion and dark energy-matter unification. Phys. Rev. D 66, 043507 (2002). [arXiv: gr-qc/0202064]

    Article  ADS  Google Scholar 

  44. D. Carturan, F. Finelli, Cosmological effects of a class of fluid dark energy models. Phys. Rev. D 68, 103501 (2003). [arXiv: astro-ph/0211626]

    Article  ADS  Google Scholar 

  45. L. Amendola, F. Finelli, C. Burigana, D. Carturan, WMAP and the generalized Chaplygin gas. JCAP 0307, 005 (2003). [arXiv: astro-ph/0304325]

    Article  ADS  MATH  Google Scholar 

  46. R. Bean, O. Dore, Are Chaplygin gases serious contenders to the dark energy throne? Phys. Rev. D 68, 023515 (2003). [arXiv: astro-ph/0301308]

    Article  ADS  Google Scholar 

  47. N. Ogawa, A Note on classical solution of Chaplygin gas as d-branes. Phys. Rev. D 62, 085023 (2000). [arXiv: hep-th/0003288]

    Article  ADS  Google Scholar 

  48. X.Q. Li, B. Chen, L.l. Xing, Charged Lovelock black holes in the presence of dark fluid with a nonlinear equation of state. [arXiv: gr-qc/1905.08156]

  49. H.B. Benaoum, Accelerated universe from modified Chaplygin gas and tachyonic fluid. [arXiv: hep-th/0205140]

  50. U. Debnath, A. Banerjee, S. Chakraborty, Role of modified Chaplygin gas in accelerated universe. Class. Quant. Grav. 21, 5609 (2004). [arXiv: gr-qc/0411015]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. T. Torii, H. Maeda, Spacetime structure of static solutions in Gauss–Bonnet gravity: neutral case. Phys. Rev. D 71, 124002 (2005). [arXiv: hep-th/0504127]

    Article  ADS  MathSciNet  Google Scholar 

  52. T. Torii, H. Maeda, Spacetime structure of static solutions in Gauss–Bonnet gravity: charged case. Phys. Rev. D 72, 064007 (2005). [arXiv: hep-th/0504141]

    Article  ADS  MathSciNet  Google Scholar 

  53. R.M. Wald, Black hole entropy is the Noether charge. Phys. Rev. D 48, R3427 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. C. Sahabandu, P. Suranyi, C. Vaz, L.C.R. Wijewardhana, Thermodynamics of static black objects in D dimensional Einstein–Gauss–Bonnet gravity with D-4 compact dimensions. Phys. Rev. D 73, 044009 (2006). [arXiv: gr-qc/0509102]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. M. Angheben, M. Nadalini, L. Vanzo, S. Zerbini, Hawking radiation as tunneling for extremal and rotating black holes. JHEP 0505, 014 (2005). [arXiv: hep-th/0503081]

    Article  ADS  MathSciNet  Google Scholar 

  56. R. Kerner, R.B. Mann, Tunnelling, temperature and Taub-NUT black holes. Phys. Rev. D 73, 104010 (2006). [arXiv: gr-qc/0603019]

    Article  ADS  MathSciNet  Google Scholar 

  57. B. Iyer, S. Iyer, C. Vishveshwara, Scalar waves in the Boulware–Deser black-hole background. Class. Quant. Grav. 6, 1627 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. C.M. Harris, P. Kanti, Hawking radiation from a (4+n)-dimensional black hole: exact results for the Schwarzschild phase. JHEP 0310, 014 (2003). [arXiv: hep-ph/0309054]

    Article  ADS  MathSciNet  Google Scholar 

  59. V. Cardoso, M. Cavaglia, L. Gualtieri, Hawking emission of gravitons in higher dimensions: non-rotating black holes. JHEP 0602, 021 (2006). arXiv: hep-ph/0512116]

    Article  ADS  MathSciNet  Google Scholar 

  60. A.S. Cornell, W. Naylor, M. Sasaki, Graviton emission from a higher-dimensional black hole. JHEP 0602, 012 (2006). arXiv: hep-ph/0510009]

    Article  ADS  MathSciNet  Google Scholar 

  61. A.S. Cornell, W. Naylor, M. Sasaki, Graviton emission from a higher-dimensional black hole. JHEP 0602, 012 (2006). arXiv:hep-ph/0510009

    Article  ADS  MathSciNet  Google Scholar 

  62. D. Kubiznak, F. Simovic, Thermodynamics of horizons: de Sitter black holes and reentrant phase transitions. Class. Quant. Grav. 33(24), 245001 (2016). arXiv:hep-ph/1507.08630

Download references

Acknowledgements

This work is partly supported by the Special Foundation for Theoretical Physics Research Program of China (Grant No. 11847065) and the Natural Science Foundation of Shanxi Province (No. 201901D211110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Qian Li.

A Einstein–Gauss–Bonnet black holes in D-dimensional spacetime

A Einstein–Gauss–Bonnet black holes in D-dimensional spacetime

The energy density of the modified Chaplygin gas shows

$$\begin{aligned} \rho (r)=\left[ \frac{1}{1+A}\left( B+\left[ \frac{Q}{r^{D-1}}\right] ^{(1+A)(1+\beta )}\right) \right] ^{\frac{1}{1+\beta }}. \end{aligned}$$
(38)

The solution for the metric function is obtained as

$$\begin{aligned} f_{\pm }(r) = \kappa +\frac{r^{2}}{2{\alpha }(D-3)(D-4)}\left( 1\pm \sqrt{{\mathcal {H}}}\right) \end{aligned}$$
(39)

with

$$\begin{aligned} {\mathcal {H}} & = 1+\frac{4\alpha (D-3)(D-4)}{D-2}\left[ \frac{2 M}{\Sigma _{D-2}r^{D-1}}+\frac{2\Lambda }{D-1} +\frac{2}{D-1}\Big (\frac{B}{1+A}\Big )^{\frac{1}{1+\beta }}{\mathcal {F}}\right] ,\nonumber \\ {\mathcal {F}} & = \, _{2}F_{1}\left( \left[ -\frac{1}{1+\beta },-\frac{1}{w}\right] ,1-\frac{1}{w}, -\frac{1}{B}\left( \frac{Q}{r^{D-1}}\right) ^{w}\right) ,\nonumber \\ w & = (1+A)(1+\beta ), \end{aligned}$$
(40)

where \(\Sigma _{D-2}\) denotes the volume of the unit \((D-2)\) sphere. Again, only the minus branch solution \(f_{-}(r)\) is considered as a black hole solution.

The black hole horizon \(r_{\mathrm{h}}\) for asymptotically anti-de Sitter solutions satisfies \(f_-(r_{\mathrm{h}})=0\), while the black hole horizon \(r_{\text {b}}\), cosmological horizon \(r_c\) and inner horizon \(r_i\) for asymptotically de Sitter solutions satisfy the equation \(f_-(r_{b,c,i})=0\). The ADM mass of the black hole in terms of the several horizons reads

$$\begin{aligned} \begin{aligned} M&=\frac{\Sigma _{D-2}}{2}\left[ (D-2)r_{h,b,c,i}^{D-3}\kappa +(D-2)(D-3)(D-4)r_{h,b,c,i} ^{D-5}\alpha \kappa ^2-\frac{2\Lambda }{D-1}r_{h,b,c,i}^{D-1} \right. \\& \quad \left. -\frac{2r_{h,b,c,i}^{D-1}}{D-1}\left( \frac{B}{1+A}\right) ^{\frac{1}{1+\alpha }} {\mathcal {F}}(r_{h,b,c,i})\right] . \end{aligned} \end{aligned}$$
(41)

According to Eq. (41), the three horizons of asymptotically de Sitter black hole are entangled. The Hawking temperatures associated with different horizons are calculated as

$$\begin{aligned}&T_{h,b}=\frac{r_{h,b}}{4\pi {\mathcal {N}}(r_{h,b})}\left[ (D-5)\kappa +(D-3)(D-4)(D-5)\frac{\alpha \kappa ^2}{r_{h,b}^2} +2\kappa -\frac{2}{D-2}r_{h,b}^2(\Lambda +\rho (r_{h,b}))\right] , \end{aligned}$$
(42)
$$\begin{aligned}&T_{c,i}=\frac{-r_{c,i}}{4\pi {\mathcal {N}}(r_{c,i})}\left[ (D-5)\kappa +(D-3)(D-4)(D-5) \frac{\alpha \kappa ^2}{r_{c,i}^2}+2\kappa -\frac{2}{D-2}r_{c,i}^2(\Lambda +\rho (r_{c,i}))\right] , \end{aligned}$$
(43)

with

$$\begin{aligned} {\mathcal {N}}(r_{h,b,c,i})=r_{h,b,c,i}^2+2(D-3)(D-4)\alpha \kappa . \end{aligned}$$

The entropies are given by

$$\begin{aligned} S_{h,b,c,i}=2\pi (D-2)\Sigma _{D-2}r_{h,b,c,i}^{D-4}\left[ \frac{r_{h,b,c,i}^2}{D-2}+2(D-3)\alpha \kappa \right] . \end{aligned}$$
(44)

The Gibbs free energies related to different horizons are identified as

$$\begin{aligned}&G_{h,b}=M-T_{h,b}S_{h,b}, \end{aligned}$$
(45)
$$\begin{aligned}&G_{c,i}=-M-T_{c,i}S_{c,i}. \end{aligned}$$
(46)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XQ., Chen, B. & Xing, LL. Black holes in Einstein–Gauss–Bonnet gravity with a background of modified Chaplygin gas. Eur. Phys. J. Plus 137, 1167 (2022). https://doi.org/10.1140/epjp/s13360-022-03379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03379-y

Navigation