Skip to main content

Advertisement

Log in

Hydrothermal synthesis of lanthanum tungstate (La2(WO4)3) for high energy density asymmetric supercapacitor

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We report hydrothermal synthesis of Lanthanum tungstate (La2(WO4)3) as an electrode materials for supercapacitor applications. The electrochemical properties of the nanoparticles were investigated using cyclic voltammetry galvanostatic charge–discharge (GCD) and electrochemical impedance spectroscopy in 2.0 M KOH solution as an aqueous electrolyte. The highest specific capacitance of 920.1 F/g was achieved at a scan rate of 5.0 mV/s. A discharging time of 370.43 s was also recorded. La2(WO4)3 shows excellent electrochemical performance with power density of 1876.9 Wkg−1 and energy density of 19.5 Whkg1. La2(WO4)3 is employed as a positive and graphite as a negative electrode in a two-electrode system. The outstanding energy density of 77.7 Wh/kg and power density of 562.7 W/kg was achieved at a current density of 1.0 A/g while a high power density of 4028.8 W/kg is attained with energy density of 39.79 Wh/kg at a current density of 7.0 A/g. The device shows the outstanding capacity retention of 83.8% after 2000 GCD cycles. Additionally, the charge storage mechanism is analyzed for the asymmetric supercapacitor using Dunn’s model. The capacitive and diffusive behavior of whole nanomaterials was examined in detail; also the exponent law is utilized to ascertain the asymmetric nature of the fabricated material, determined through b values. This favorable behavior of La2(WO4)3 suggest potential candidature for electrode in asymmetric supercapacitor application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

References

  1. J. Xiao, J. Han, C. Zhang, G. Ling, F. Kang, Q.H. Yang, Dimensionality, function and performance of carbon materials in energy storage devices. Adv. Energy Mater. 12(4), 2100775 (2022). https://doi.org/10.1002/aenm.202100775

    Article  Google Scholar 

  2. C. Hu, D. Liu, Y. Xiao, L. Dai, Functionalization of graphene materials by heteroatom-doping for energy conversion and storage. Progress Nat. Sci. Mater. Int. 28(2), 121–132 (2018). https://doi.org/10.1016/j.pnsc.2018.02.001

    Article  Google Scholar 

  3. Y. Wang, Y. Song, Y. Xia, Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 45(21), 5925–5950 (2016). https://doi.org/10.1039/C5CS00580A

    Article  Google Scholar 

  4. B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741

    Article  ADS  Google Scholar 

  5. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. rev. 104(10), 4245–4270 (2004). https://doi.org/10.1021/cr020730k

    Article  Google Scholar 

  6. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625

    Article  ADS  Google Scholar 

  7. R. Zhu, H. Duan, Z. Zhao, H. Pang, Recent progress of dimensionally designed electrode nanomaterials in aqueous electrochemical energy storage. J. Mater. Chem. A. 9(15), 9535–9572 (2021). https://doi.org/10.1039/D1TA00204J

    Article  Google Scholar 

  8. Q. Wang, J. Yan, Z. Fan, Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ. Sci. 9(3), 729–762 (2016). https://doi.org/10.1039/C5EE03109E

    Article  Google Scholar 

  9. B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications (Springer Science & Business Media, Berlin, 2013)

    Google Scholar 

  10. H.J. Choi, S.M. Jung, J.M. Seo, D.W. Chang, L. Dai, J.B. Baek, Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 1(4), 534–551 (2012). https://doi.org/10.1016/j.nanoen.2012.05.001

    Article  Google Scholar 

  11. Z. Zhang, Y. Zhang, K. Yang, K. Yi, Z. Zhou, A. Huang, K. Mai, X. Lu, Three-dimensional carbon nanotube/ethylvinylacetate/polyaniline as a high performance electrode for supercapacitors. J. Mater. Chem. A. 3(5), 1884–1889 (2015). https://doi.org/10.1039/C4TA06637E

    Article  Google Scholar 

  12. H. Liu, Z. Liang, S. Liu, L. Zhang, H. Xia, W. Xie, Nickel manganese hydroxides with thin-layer nanosheets and multivalences for high-performance supercapacitor. Result. Phys. 16, 102831 (2020). https://doi.org/10.1016/j.rinp.2019.102831

    Article  Google Scholar 

  13. I. Shakir, Z. Almutairi, S.S. Shar, Fabrication of carbon cloth supported Ni@ Fe double hydroxide based electrode for flexible supercapacitor applications. Ceramic. Int. 47(12), 17427–17434 (2021). https://doi.org/10.1016/j.ceramint.2021.03.059

    Article  Google Scholar 

  14. L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, M. Liu, Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano let. 13(7), 3135–3139 (2013). https://doi.org/10.1021/nl401086t

    Article  ADS  Google Scholar 

  15. W. Zhou, X. Cao, Z. Zeng, W. Shi, Y. Zhu, Q. Yan, H. Liu, J. Wang, H. Zhang, One-step synthesis of Ni 3 S 2 nanorod@ Ni (OH) 2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ. Sci. 6(7), 2216–2221 (2013). https://doi.org/10.1039/C3EE40155C

    Article  Google Scholar 

  16. J. Yang, Y. Chang, X. Fan, J. Qiu, 3D architecture materials made of NiCoAl-LDH nanoplates coupled with NiCo-carbonate hydroxide nanowires grown on flexible graphite paper for asymmetric supercapacitors. Adv. Energy Mater. 4(18), 1400761 (2014). https://doi.org/10.1002/aenm.201400761

    Article  Google Scholar 

  17. S. Zhu, L. Li, J. Liu, H. Wang, T. Wang, Y. Zhang, L. Zhang, R.S. Ruoff, F. Dong, Structural directed growth of ultrathin parallel birnessite on β-MnO2 for high-performance asymmetric supercapacitors. ACS Nano 12(2), 1033–1042 (2018). https://doi.org/10.1021/acsnano.7b03431

    Article  Google Scholar 

  18. X. Yu, C. Zhan, R. Lv, Y. Bai, Y. Lin, Z.H. Huang, W. Shen, X. Qiu, F. Kang, Ultrahigh-rate and high-density lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated microcrystalline graphite anode. Nano Energy 15, 43–53 (2015). https://doi.org/10.1016/j.nanoen.2015.03.001

    Article  Google Scholar 

  19. H. Li, Y. Zhu, S. Dong, L. Shen, Z. Chen, X. Zhang, G. Yu, Self-assembled Nb2O5 nanosheets for high energy–high power sodium ion capacitors. Chem. Mater. 28(16), 5753–5760 (2016). https://doi.org/10.1021/acs.chemmater.6b01988

    Article  Google Scholar 

  20. B.E. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors. J. Power Sources. 66(1–2), 1–14 (1997). https://doi.org/10.1016/S0378-7753(96)02474-3

    Article  ADS  Google Scholar 

  21. D. Liu, S. Yu, Y. Shen, H. Chen, Z. Shen, S. Zhao, S. Fu, Y. Yu, B. Bao, Polyaniline coated boron doped biomass derived porous carbon composites for supercapacitor electrode materials. Ind. Engg. Chem. Res. 54(50), 12570–12579 (2015). https://doi.org/10.1021/acs.iecr.5b02507

    Article  Google Scholar 

  22. T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Boosting the cycling stability of transition metal compounds-based supercapacitors. Energy Storage Mater. 16, 545–573 (2019). https://doi.org/10.1016/j.ensm.2018.09.007

    Article  Google Scholar 

  23. K. Prasanna, T. Subburaj, Y.N. Jo, W.J. Lee, C.W. Lee, Environment-friendly cathodes using biopolymer chitosan with enhanced electrochemical behavior for use in lithium ion batteries. ACS Appl. Mater. Interf. 7(15), 7884–7890 (2015). https://doi.org/10.1021/am5084094

    Article  Google Scholar 

  24. W. Meng, L. Wang, Y. Li, H. Zhou, Z. He, W. Meng, L. Dai, Mixed-potential type NH3 sensor based on CoWO4-PdO sensing electrode prepared by self-demixing. Electrochim. Acta. 321, 134668 (2019). https://doi.org/10.1016/j.electacta.2019.134668

    Article  Google Scholar 

  25. Y. Han, K. Choi, H. Oh, C. Kim, D. Jeon, C. Lee, J.H. Lee, J. Ryu, Cobalt polyoxometalate-derived CoWO4 oxygen-evolving catalysts for efficient electrochemical and photoelectrochemical water oxidation. J. Catal. 367, 212–220 (2018). https://doi.org/10.1016/j.jcat.2018.09.011

    Article  Google Scholar 

  26. S. Feizpoor, A. Habibi-Yangjeh, Ternary TiO2/Fe3O4/CoWO4 nanocomposites: novel magnetic visible-light-driven photocatalysts with substantially enhanced activity through pn heterojunction. J. Colloid Interf. Sci. 524, 325–336 (2018). https://doi.org/10.1016/j.jcis.2018.03.069

    Article  ADS  Google Scholar 

  27. Y. Huang, C. Yan, X. Shi, W. Zhi, Z. Li, Y. Yan, M. Zhang, G. Cao, Ni0.85Co0.15WO4 nanosheet electrodes for supercapacitors with excellent electrical conductivity and capacitive performance. Nano Energy 48, 430–440 (2018). https://doi.org/10.1016/j.nanoen.2018.03.082

    Article  Google Scholar 

  28. N. Goubard-Bretesché, O. Crosnier, C. Payen, F. Favier, T. Brousse, Nanocrystalline FeWO4 as a pseudocapacitive electrode material for high volumetric energy density supercapacitors operated in an aqueous electrolyte. Electrochem. Commun. 57, 61–64 (2015). https://doi.org/10.1016/j.elecom.2015.05.007

    Article  Google Scholar 

  29. Y. Wang, C. Shen, L. Niu, Z. Sun, F. Ruan, M. Xu, S. Shan, C. Li, X. Liu, Y. Gong, High rate capability of mesoporous NiWO4–CoWO4 nanocomposite as a positive material for hybrid supercapacitor. Mater. Chem. Phys. 182, 394–401 (2016). https://doi.org/10.1016/j.matchemphys.2016.07.047

    Article  Google Scholar 

  30. H.V. Azevedo, R.A. Raimundo, L.S. Ferreira, M.M. Silva, M.A. Morales, D.A. Macedo, U.U. Gomes, D.G. Cavalcante, Green synthesis of CoWO4 powders using agar-agar from red seaweed (Rhodophyta): structure, magnetic properties and battery-like behavior. Mater. Chem. Phys. 242, 122544 (2020). https://doi.org/10.1016/j.matchemphys.2019.122544

    Article  Google Scholar 

  31. R. Zhu, H. Duan, Z. Zhao, H. Pang, Recent progress of dimensionally designed electrode nanomaterials in aqueous electrochemical energy storage. J. Mater. Chem. A. 9(15), 9535–9572 (2021). https://doi.org/10.1039/D1TA00204J

    Article  Google Scholar 

  32. H. Duan, Z. Zhao, J. Lu, W. Hu, Y. Zhang, S. Li, M. Zhang, R. Zhu, H. Pang, When conductive MOFs meet MnO2: high electrochemical energy storage performance in an aqueous asymmetric supercapacitor. ACS Appl. Mater. Interf. 13(28), 33083–33090 (2021). https://doi.org/10.1021/acsami.1c08161

    Article  Google Scholar 

  33. H. Duan, M. Shi, M. Zhang, G. Feng, S. Liu, C. Chen, Lanthanum oxide nickel hydroxide composite triangle nanosheets for energy density asymmetric supercapacitors. Front. Chem. 9, 783942 (2021). https://doi.org/10.3389/fchem.2021.783942

    Article  Google Scholar 

  34. S. Iqbal, N.A. Shaid, M.M. Sajid, Y. Javed, M. Fakhar-e-Alam, A. Mahmood, M. Sarwar, Extensive evaluation of changes in structural, chemical and thermal properties of copper sulfide nanoparticles at different calcination temperature. J. Crystal Growth 547, 125823 (2020). https://doi.org/10.1016/j.jcrysgro.2020.125823

    Article  Google Scholar 

  35. A. Hussin, A. Rahman, K. Ibrahim. Mineralogy and geochemistry of clays from Malaysia and its industrial application. in IOP Conference Series: Earth and Environmental Science. 2018: IOP Publishing.

  36. H. Yang, D. Jie, W. Weiqing, F. Qiming, X. Zhonghui, Preliminary investigation of pozzolanic properties of calcined waste kaolin. Mater. Sci. 24(2), 177–184 (2018). https://doi.org/10.5755/j01.ms.24.2.18192

    Article  Google Scholar 

  37. K.C. Chen, C.W. Wang, Y.I. Lee, H.G. Liu, Nanoplates and nanostars of β-PbO formed at the air/water interface. Colloids Surf. A Physicochem. Eng. Aspect. 373(1–3), 124–129 (2011). https://doi.org/10.1016/j.colsurfa.2010.10.035

    Article  Google Scholar 

  38. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, P. Norouzi, F. Faridbod, M.S. Karimi, Statistically optimized synthesis of dyspersium tungstate nanoparticles as photocatalyst. J. Mater. Sci. Mater. Electron. 27(12), 12860–12868 (2016). https://doi.org/10.1007/s10854-016-5421-5

    Article  Google Scholar 

  39. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, P. Norouzi, F. Faridbod, M.S. Karimi, Preparation of dysprosium carbonate and dysprosium oxide efficient photocatalyst nanoparticles through direct carbonation and precursor thermal decomposition. J. Mater. Sci. Mater. Electron. 28(4), 3325–3336 (2017). https://doi.org/10.1007/s10854-016-5926-y

    Article  Google Scholar 

  40. I. Jacques, Pankove, optical processes in semiconductors (Dover Publications Inc, Minelo, 1971)

    Google Scholar 

  41. M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Aghazadeh, M.R. Ganjali, M.S. Karimi, P. Norouzi, Synthesis of nano-structured lanthanum tungstates photocatalysts. J. Mater. Sci. Mater. Electron. 28(11), 7600–7608 (2017). https://doi.org/10.1007/s10854-017-6452-2

    Article  Google Scholar 

  42. H.S. Jadhav, A. Roy, W.J. Chung, J.G. Seo, Growth of urchin-like ZnCo2O4 microspheres on nickel foam as a binder-free electrode for high-performance supercapacitor and methanol electro-oxidation. Electrochim. Acta. 246, 941–950 (2017). https://doi.org/10.1016/j.electacta.2017.06.118

    Article  Google Scholar 

  43. M.N. Shaddad, M.A. Ghanem, A.M. Al-Mayouf, S. Gimenez, J. Bisquert, I. Herraiz-Cardona, Cooperative catalytic effect of ZrO2 and a-Fe2O3 nanoparticles on BiVO4 photoanodes for enhanced photoelectrochemical water splitting. Chem sus. Chem. 9(19), 2779–2783 (2016). https://doi.org/10.1002/cssc.201600890

    Article  Google Scholar 

  44. M.Z. Iqbal, M.M. Faisal, S.R. Ali, A.M. Afzal, M.R.A. Karim, M.A. Kamran, T. Alharbi, Strontium phosphide-polyaniline composites for high performance supercapattery devices. Ceramics Int. 46(8), 10203–10214 (2020). https://doi.org/10.1016/j.ceramint.2020.01.012

    Article  Google Scholar 

  45. M.Z. Iqbal, M.M. Faisal, S.R. Ali, S. Farid, A.M. Afzal, Co-MOF/polyaniline-based electrode material for high performance supercapattery devices. Electrochim. Acta. 346, 136039 (2020). https://doi.org/10.1016/j.electacta.2020.136039

    Article  Google Scholar 

  46. H. Kim, J. Park, I. Park, K. Jin, S.E. Jerng, S.H. Kim, K. Kang, Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst. Nat. Commun. 6(1), 1–11 (2015). https://doi.org/10.1038/ncomms9253

    Article  ADS  Google Scholar 

  47. V. Augustyn, E.R. White, J. Ko, G. Grüner, B.C. Regan, B. Dunn, Lithium-ion storage properties of titanium oxide nanosheets. Mater. Horiz. 1(2), 219–223 (2014). https://doi.org/10.1039/C3MH00070B

    Article  Google Scholar 

  48. D. Kannangara, B. Conway, Zinc oxidation and redeposition processes in aqueous alkali and carbonate solutions: I. pH and carbonate ion effects in film formation and dissolution. J. Electrochem. Soc. 134(4), 894–906 (1987). https://doi.org/10.1149/1.2100593

    Article  ADS  Google Scholar 

  49. P. Kissinger, W.R. Heineman, Laboratory techniques in electroanalytical chemistry, revised and expanded (CRC Press, 2018)

    Book  Google Scholar 

  50. L. He, G. Zhang, Y. Dong, Z. Zhang, S. Xue, X. Jiang, Polyetheramide templated synthesis of monodisperse Mn3O4 nanoparticles with controlled size and study of the electrochemical properties. Nano-Micro Lett. 6(1), 38–45 (2014). https://doi.org/10.1007/BF03353767

    Article  Google Scholar 

  51. M. Alzaid, M.Z. Iqbal, S. Alam, N. Almoisheer, A.M. Afzal, S. Aftab, Binary composites of nickel-manganese phosphates for supercapattery devices. J. Energy Storage 33, 102020 (2021). https://doi.org/10.1016/j.est.2020.102020

    Article  Google Scholar 

  52. Q. Lu, M.W. Lattanzi, Y. Chen, X. Kou, W. Li, X. Fan, J.Q. Xiao, Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew. Chem. Int. Ed. 50(30), 6847–6850 (2011). https://doi.org/10.1002/anie.201101083

    Article  Google Scholar 

  53. D.P. Dubal, R. Holze, All-solid-state flexible thin film supercapacitor based on Mn3O4 stacked nanosheets with gel electrolyte. Energy 51, 407–412 (2013). https://doi.org/10.1016/j.energy.2012.11.021

    Article  Google Scholar 

  54. M. Alzaid, F. Alsalh, M.Z. Iqbal, Biomass derived activated carbon based hybrid supercapacitors. J. Energy Storage 40, 102751 (2021). https://doi.org/10.1016/j.est.2021.102751

    Article  Google Scholar 

  55. H. Li, Z. Li, M. Sun, Z. Wu, W. Shen, Y.Q. Fu, Zinc cobalt sulfide nanoparticles as high performance electrode material for asymmetric supercapacitor. Electrochim. Acta. 319, 716–726 (2019). https://doi.org/10.1016/j.electacta.2019.07.033

    Article  Google Scholar 

  56. M.F. Iqbal, M.N. Ashiq, A. Razaq, M. Saleem, B. Parveen, M.U. Hassan, Excellent electrochemical performance of graphene oxide based strontium sulfide nanorods for supercapacitor applications. Electrochim. Acta. 273, 136–144 (2018). https://doi.org/10.1016/j.electacta.2018.04.014

    Article  Google Scholar 

  57. Y.R. Nian, H. Teng, Nitric acid modification of activated carbon electrodes for improvement of electrochemical capacitance. J. Electrochem. Soc. 149(8), A1008 (2002). https://doi.org/10.1149/1.1490535

    Article  Google Scholar 

  58. X.X. Li, X.H. Deng, Q.J. Li, S. Huang, K. Xiao, Z.Q. Liu, Y. Tong, Hierarchical double-shelled poly (3, 4-ethylenedioxythiophene) and MnO2 decorated Ni nanotube arrays for durable and enhanced energy storage in supercapacitors. Electrochim. Acta. 264, 46–52 (2018). https://doi.org/10.1016/j.electacta.2018.01.069

    Article  Google Scholar 

  59. M. Ates, N. Uludag, Capacitive behaviors and monomer concentration effects of poly (9-benzyl-9 H-carbazole) on carbon fiber microelectrode. Fibers Polym. 12(3), 296–302 (2011). https://doi.org/10.1007/s12221-011-0296-9

    Article  Google Scholar 

  60. Q. Wang, F.N. Yong, Z.H. Xiao, X.Y. Chen, Z.J. Zhang, Simply incorporating an efficient redox additive into KOH electrolyte for largely improving electrochemical performances. J. Electroanal. Chem. 770, 62–72 (2016). https://doi.org/10.1016/j.jelechem.2016.03.037

    Article  Google Scholar 

  61. H. Biao, H. Wang, S. Liang, H. Qin, Y. Li, Z. Luo, C. Zhao, L. Xie, L. Chen, Two-dimensional porous cobalt–nickel tungstate thin sheets for high performance supercapattery. Energy Storage Mater. 32, 105–114 (2020). https://doi.org/10.1016/j.ensm.2020.07.014

    Article  Google Scholar 

  62. L. Yu, G.Z. Chen, Ionic liquid-based electrolytes for supercapacitor and supercapattery. Front. Chem. 7, 272 (2019). https://doi.org/10.3389/fchem.2019.00272

    Article  ADS  Google Scholar 

  63. T.S. Renani, S.M. Khoshfetrat, J. Arjomandi, H. Shi, S. Khazalpour, Fabrication and design of new redox active azure A/3D graphene aerogel and conductive trypan blue–nickel MOF nanosheet array electrodes for an asymmetric supercapattery. J. Mater. Chem. A. 9(21), 12853–12869 (2021). https://doi.org/10.1039/D1TA02850B

    Article  Google Scholar 

  64. D. Chao, C. Zhu, P. Yang, X. Xia, J. Liu, J. Wang, Z.X. Shen, Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat. commun. 7(1), 1–8 (2016). https://doi.org/10.1038/ncomms12122

    Article  Google Scholar 

  65. G.Z. Chen, Supercapattery: merit merge of capacitive and Nernstian charge storage mechanisms. Curr. Op. Electrochem. 21, 358–367 (2020). https://doi.org/10.1016/j.coelec.2020.04.002

    Article  Google Scholar 

  66. T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon, Y. Gogotsi, Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Adv. energy Mater. 9(39), 1902007 (2019). https://doi.org/10.1002/aenm.201902007

    Article  Google Scholar 

  67. Q. Li, J. Zhou, R. Liu, L. Han, An amino-functionalized metal–organic framework nanosheet array as a battery-type electrode for an advanced supercapattery. Dalton Trans. 48(46), 17163–17168 (2019). https://doi.org/10.1039/C9DT03821C

    Article  Google Scholar 

  68. R. Govindan, X.J. Hong, P. Sathishkumar, Y.P. Cai, F.L. Gu, Construction of metal-organic framework-derived CeO2/C integrated MoS2 hybrid for high-performance asymmetric supercapacitor. Electrochim. Acta. 353, 136502 (2020). https://doi.org/10.1016/j.electacta.2020.136502

    Article  Google Scholar 

  69. D. Yu, Z. Li, G. Zhao, H. Zhang, H. Aslan, J. Li, M. Yu, Porous ultrathin NiSe nanosheet networks on nickel foam for high-performance hybrid supercapacitors. Chem. Sus. Chem. 13(1), 260–266 (2020). https://doi.org/10.1002/cssc.201901766

    Article  Google Scholar 

  70. B. Zhao, D. Chen, X. Xiong, B. Song, R. Hu, Q. Zhang, M. Liu, A high-energy, long cycle-life hybrid supercapacitor based on graphene composite electrodes. Energy Storage Mater. 7, 32–39 (2017). https://doi.org/10.1016/j.ensm.2016.11.010

    Article  Google Scholar 

  71. M.Z. Iqbal, A. Khan, A. Numan, S.S. Haider, J. Iqbal, Ultrasonication-assisted synthesis of novel strontium based mixed phase structures for supercapattery devices. Ultrason. Sonochem. 59, 104736 (2019). https://doi.org/10.1016/j.ultsonch.2019.104736

    Article  Google Scholar 

  72. J. Jiang, Z. Li, X. He, Y. Hu, F. Li, P. Huang, C. Wang, Novel skutterudite CoP3–based asymmetric supercapacitor with super high energy density. Small 16(31), 2000180 (2020). https://doi.org/10.1002/smll.202000180

    Article  Google Scholar 

  73. H. Wang, M. Liang, D. Duan, W. Shi, Y. Song, Z. Sun, Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance. Chem. Eng. J. 350, 523–533 (2018). https://doi.org/10.1016/j.cej.2018.05.004

    Article  Google Scholar 

  74. M.Z. Iqbal, M.M. Faisal, M. Sulman, S.R. Ali, M. Alzaid, Facile synthesis of strontium oxide/polyaniline/graphene composite for the high-performance supercapattery devices. J. Electroanal. Chem. 879, 114812 (2020). https://doi.org/10.1016/j.jelechem.2020.114812

    Article  Google Scholar 

  75. A. Noori, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chem. Sci. Rev. 48(5), 1272–1341 (2019). https://doi.org/10.1039/C8CS00581H

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge their respective institutions for their support and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jabir Hakami.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghar, A., Hakami, J., Imran, M. et al. Hydrothermal synthesis of lanthanum tungstate (La2(WO4)3) for high energy density asymmetric supercapacitor. Eur. Phys. J. Plus 137, 1177 (2022). https://doi.org/10.1140/epjp/s13360-022-03376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03376-1

Navigation