Skip to main content
Log in

Concatenation of deleting machines

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we analyze the performance of various deleting machines and their concatenation. It is observed that concatenation of Pati–Braunstein deleting machine and our deleting machine exhibits the same nonlocal properties. It is observed that concatenation of same deleting machines does not alter the fidelity of deletion and retention. Using negativity as a measure of quantum correlation of successive deleted states, we found that the total correlation created by deleting machines is always greater than that of concatenated deleting machines. For achieving better deletion, we have explored the concatenation of Buzek–Hillery cloning machine with different deleting machines. It is found that the deletion fidelity of concatenation of Buzek–Hillery cloning machine with our deleting machine is more than that of Buzek–Hillery cloning machine with Pati–Braunstein deleting machine for certain combinations of input states and blank states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No data sets were generated or analyzed during the current study.

References

  1. W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned. Nature 299, 802 (1982)

    Article  ADS  Google Scholar 

  2. A.K. Pati, S.L. Braunstein, Impossibility of deleting an unknown quantum state. Nature 404, 164 (2000)

    Article  ADS  Google Scholar 

  3. A.K. Pati, S.L. Braunstein, Quantum no-deleting principle and some of its implications. arXiv preprint: quant-ph/0007121 (2000)

  4. V. Buzek, M. Hillery, Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. N. Gisin, S. Massar, Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153 (1997)

    Article  ADS  Google Scholar 

  6. I. Chakrabarty, B. Choudhury, Impossibility of probabilistic splitting of quantum information. arXiv preprint: quant-ph/0608023 (2006)

  7. S. Adhikari, N. Ganguly, I. Chakrabarty, B. Choudhury, Quantum cloning, bell’s inequality and teleportation. J. Phys. A: Math. Theor. 41, 415302 (2008)

    Article  MathSciNet  Google Scholar 

  8. L.-M. Duan, G.-C. Guo, Probabilistic cloning and identification of linearly independent quantum states. Phys. Rev. Lett. 80, 4999 (1998)

    Article  ADS  Google Scholar 

  9. S. Adhikari, A.K. Pati, I. Chakrabarty, B.S. Choudhury, Hybrid quantum cloning machine. Quantum Inf. Process. 6, 197 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. A.K. Pati, Quantum superposition of multiple clones and the novel cloning machine. Phys. Rev. Lett. 83, 2849 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Adhikari, B. Choudhury, Improving the fidelity of deletion. Phys. Rev. A 73, 054303 (2006)

    Article  ADS  Google Scholar 

  12. S. Adhikari, B.S. Choudhury, Deletion of imperfect cloned copies. J. Phys. A: Math. Gen. 37, 11877 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Adhikari, Quantum deletion: beyond the no-deletion principle. Phys. Rev. A 72, 052321 (2005)

    Article  ADS  Google Scholar 

  14. S. Adhikari, B. Choudhury, Broadcasting of three qubit entanglement via local copying and entanglement swapping. Phys. Rev. A 74, 032323 (2006)

    Article  ADS  Google Scholar 

  15. D. Qiu, Combinations of probabilistic and approximate quantum cloning and deleting. Phys. Rev. A 65, 052329 (2002)

    Article  ADS  Google Scholar 

  16. D. Qiu, Non-optimal universal quantum deleting machine. Phys. Lett. A 301, 112 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Horodecki, A. Sen, U. Sen et al., Dual entanglement measures based on no local cloning and no local deleting. Phys. Rev. A 70, 052326 (2004)

    Article  ADS  Google Scholar 

  18. R. Srikanth, S. Banerjee, An environment-mediated quantum deleter. Phys. Lett. A 367, 295 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Horodecki, R. Horodecki, U. Sen et al., Common origin of no-cloning and no-deleting principles conservation of information. Found. Phys. 35, 2041 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Horodecki, R. Horodecki, A. S. De, U. Sen, Nodeleting and no-cloning principles as consequences of conservation of quantum information. arXiv preprint: quantph/0306044 (2003)

  21. M.. A.. Nielsen, Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83(2), 436–439 (1999). https://doi.org/10.1103/PhysRevLett.83.436

    Article  ADS  Google Scholar 

  22. A.K. Pati, S.L. Braunstein, Quantum deleting and signalling. Phys. Lett. A 315, 208 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Bhar, I. Chattopadhyay, D. Sarkar, No-cloning and no-deleting theorems through the existence of incomparable states under locc. Quantum Inf. Process. 6, 93 (2007)

    Article  MathSciNet  Google Scholar 

  24. M.A. Nielson, I.L. Chuang, Quantum computation and quantum information (2000)

  25. A. Nancy, S. Balakrishnan, Non-local characteristics of deleting machine. Eur. Phys. J. Plus 136 (2021)

  26. S. Sazim, I. Chakrabarty, A. Dutta, A.K. Pati, Complementarity of quantum correlations in cloning and deleting of quantum states. Phys. Rev. A 91, 062311 (2015)

    Article  ADS  Google Scholar 

  27. G. Vidal, R.F. Werner, Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  28. W.K. Wootters, Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  29. K. Audenaert, F. Verstraete, T. De Bie, B. De Moor, Negativity and concurrence of mixed 2x2 states, arXiv preprint: quant-ph/0012074 (2000)

  30. S. Rana, Negative eigenvalues of partial transposition of arbitrary bipartite states. Phys. Rev. A 87, 054301 (2013)

    Article  ADS  Google Scholar 

  31. M.A. Nielsen, C.M. Dawson, J.L. Dodd, A. Gilchrist, D. Mortimer, T.J. Osborne, M.J. Bremner, A.W. Harrow, A. Hines, Quantum dynamics as a physical resource. Phys. Rev. A 67, 052301 (2003)

    Article  ADS  Google Scholar 

  32. S. Balakrishnan, M. Lakshmanan, Chaining property for two-qubit operator entanglement measures. Eur. Phys. J. Plus 129, 1 (2014)

    Article  Google Scholar 

  33. V.I. Levenshtein, Binary codes capable of correcting deletions, insertions, and reversals. Soviet Phys. Doklady 10, 707–710 (1966)

    ADS  MathSciNet  Google Scholar 

  34. A. Nakayama, M.Hagiwara, The first quantum error correcting code for single deletion errors, In IEICE Communications Express, 2019XBL0154 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balakrishnan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nancy, A., Balakrishnan, S. Concatenation of deleting machines. Eur. Phys. J. Plus 137, 1156 (2022). https://doi.org/10.1140/epjp/s13360-022-03366-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03366-3

Navigation