Skip to main content
Log in

The effect of modified dispersion relations on the thermodynamics of Schwarzschild black hole surrounded by quintessence

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this manuscript, we investigate the effects of a modified dispersion relation on the thermodynamics of Schwarzschild black hole surrounded by the quintessence matter. We find that the MDR correction states the same lower bound on the horizon, while the quintessence matter specifies the upper bound to the horizon depending on the state parameter. Due to MDR correction and quintessence matter presence, we observe modifications in equation of state and specific heat functions of black hole. We show that a remnant can occur according to quintessence matter, and the black hole’s stability depends only on the modified dispersion relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. D.J. Gross, P.F. Mende, Nucl. Phys. B 303, 407 (1988)

    Article  ADS  Google Scholar 

  2. M. Maggiore, Phys. Lett. B 304, 65 (1993)

    Article  ADS  Google Scholar 

  3. G. Amelino-Camelia, Phys. Lett. B 510, 255 (2001)

    Article  ADS  Google Scholar 

  4. J. Magueijo, L. Smolin, Phys. Rev. Lett. 88, 190403 (2002)

    Article  ADS  Google Scholar 

  5. J. Magueijo, L. Smolin, Phys. Rev. D 67, 044017 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. A.F. Ali, S. Das, E.C. Vagenas, Phys. Lett. B 678, 497 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. N. Gaddam, N. Groenenboom, G. t’ Hooft, JHEP 01, 023 (2022)

    Article  ADS  Google Scholar 

  8. G. Amelino-Camelia, A. Procaccini, Int. J. Mod. Phys. D 13, 2337 (2004)

    Article  ADS  Google Scholar 

  9. G. Amelino-Camelia, M. Arzano, Y. Ling, G. Mandanici, Class. Quantum Grav. 23, 2585 (2006)

    Article  ADS  Google Scholar 

  10. Y. Ling, B. Hu, X. Li, Phys. Rev. D 73, 087702 (2006)

    Article  ADS  Google Scholar 

  11. X. Han, H. Li, Y. Ling, Phys. Lett. B 666, 121 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. A.D. Kamali, P. Aspoukah, Int. J. Theor. Phys. 55, 4492 (2016)

    Article  Google Scholar 

  13. A.D. Kamali, P. Pedram, Gen. Relativ. Grav. 48, 58 (2016)

    Article  ADS  Google Scholar 

  14. I.P. Lobo, V.B. Bezerra, J.P. Morais GraçSa, L.C.N. Santos, M. Ronco, Phys. Rev. D 101, 084004 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. A.S. Sefiedgar, K. Nozari, H.R. Sepangi, Phys. Lett. B 696, 119 (2011)

    Article  ADS  Google Scholar 

  16. A.G. Riess et al., Astronom. J. 116, 1008 (1998)

    Article  ADS  Google Scholar 

  17. A.G. Riess et al., Astronom. J. 117, 707 (1999)

    Article  ADS  Google Scholar 

  18. S.J. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  19. T. Padmanabhan, Phys. Rep. 380, 235 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989)

    Article  ADS  Google Scholar 

  21. S.M. Carroll, Phys. Rev. Lett. 81, 3067 (1998)

    Article  ADS  Google Scholar 

  22. C. Armendariz-Picon, V. Mukhanov, P.J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000)

    Article  ADS  Google Scholar 

  23. T. Padmanabhan, Phys. Rev. D 66, 021301 (2002)

    Article  ADS  Google Scholar 

  24. R.R. Caldwell, Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  25. M. Gasperini, M. Piassa, G. Veneziano, Phys. Rev. D 65, 023508 (2002)

    Article  ADS  Google Scholar 

  26. J. Khoury, A. Weltman, Phys. Rev. Lett. 93, 171104 (2004)

    Article  ADS  Google Scholar 

  27. E.J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  ADS  Google Scholar 

  28. V.V. Kiselev, Class. Quantum Grav. 20, 1187 (2003)

    Article  ADS  Google Scholar 

  29. S. Chen, B. Wang, R. Su, Phys. Rev. D 77, 124011 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  30. Y.H. Wei, Z.H. Chu, Chin. Phys. Lett. 28, 100403 (2011)

    Article  ADS  Google Scholar 

  31. Y.H. Wei, J. Ren, Chin. Phys. B 22(3), 03040 (2013)

    Google Scholar 

  32. S. Fernando, Mod. Phys. Lett. A 28(40), 1350189 (2013)

    Article  ADS  Google Scholar 

  33. S. Fernando, Gen. Relativ. Gravit. 45, 2053 (2013)

    Article  ADS  Google Scholar 

  34. K. Ghaderi, B. Malakolkalami, Astrophys. Space Sci. 361, 161 (2016)

    Article  ADS  Google Scholar 

  35. K. Ghaderi, B. Malakolkalami, Nucl. Phys. B 903, 10 (2016)

    Article  ADS  Google Scholar 

  36. M. Shahjalal, Nucl. Phys. B 940, 63 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Eslamzadeh, K. Nozari, Nucl. Phys. B 959, 115136 (2020)

    Article  Google Scholar 

  38. K. Nozari, M. Hajebrahimiand, S. Saghafi, Eur. Phys. J. C 80, 1208 (2020)

    Article  ADS  Google Scholar 

  39. A. Haldar, R. Biswas, Gen. Relativ. Gravit. 52, 19 (2020)

    Article  ADS  Google Scholar 

  40. R. Ndongmo, S. Mahamat, T.B. Bouetou, T.C. Kofane, Phys. Scr. 96, 095001 (2021)

    Article  ADS  Google Scholar 

  41. B.C. Lütfüoğlu, B. Hamil, L. Dahbi, Eur. Phys. J. Plus 136, 976 (2021)

    Article  Google Scholar 

  42. H. Chen, B.C. Lütfüoğlu, H. Hassanabadi, Z.W. Long, Phys. Lett. B 827, 136994 (2022)

    Article  Google Scholar 

  43. G. Amelino-Camelia, M. Arzano, A. Procaccini, Phys. Rev. D 70, 107501 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  44. A.N. Tawfik, A.M. Diab, Rep. Prog. Phys. 78, 126001 (2015)

    Article  ADS  Google Scholar 

  45. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  46. B.C. Lütfüoğlu, B. Hamil, L. Dahbi, Int. J. Mod. Phys. A 37, 2250126 (2022)

    Article  ADS  Google Scholar 

  47. K. Nozari, A.S. Sefiedgar, Phys. Lett. B 635, 156 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  48. S. Hossenfelder, Class. Quantum Grav. 23, 1815 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  49. J.M. Bardeen, B. Carter, S.W. Hawking, Commun. Math. Phys. 31, 161 (1973)

    Article  ADS  Google Scholar 

  50. S.W. Hawking, Commun. Math. 43, 199 (1975)

    Article  ADS  Google Scholar 

  51. D. Kastor, S. Ray, J. Traschen, Class. Quantum Grav. 26, 195011 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referee for a thorough reading of our manuscript and for constructive suggestions. BCL is supported by the Internal Project [2022/2218] of Excellent Research of the Faculty of Science of Hradec Králové University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Lütfüoğlu.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamil, B., Lütfüoğlu, B.C. The effect of modified dispersion relations on the thermodynamics of Schwarzschild black hole surrounded by quintessence. Eur. Phys. J. Plus 137, 1124 (2022). https://doi.org/10.1140/epjp/s13360-022-03336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03336-9

Navigation