Skip to main content
Log in

Dipole–monopole alternative in nonlinear dynamics of an integrable gauge-coupled exciton-phonon system on a one-dimensional lattice

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The gauge-coupled nonlinear dynamical system of \({\mathcal {P}}{\mathcal {T}}\)-symmetric intra-site excitations and lattice vibrations on a one-dimensional lattice is studied. The system proves to be integrable in the Lax sense inasmuch as it admits the semi-discrete zero-curvature representation associated with the specific auxiliary linear problem of third order. The appropriate Darboux–Bäcklund technique for generating the system’s nontrivial solutions is developed and thoroughly explained. In the framework of this approach both the singular and physically meaningful four-component solutions are found analytically. The physically meaningful four-component solution is shown to demonstrate the dipole–monopole alternative in nonlinear dynamics of pseudo-excitonic subsystem caused by the interplay between the two typical spatial scales. These spatial scales characterize the spatial arrangements of two principally distinct types of traveling waves in their essentially nonlinear superposition. The criterion of critical transition between the dipole and monopole regimes in the spatial distribution of intra-site excitations is established. The under-critical and over-critical regimes of system’s dynamics are comprehensively illustrated graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availibility Statement

The manuscript has no associated data.

References

  1. L.D. Landau, S.I. Pekar, Effective mass of a polaron. Ukr. J. Phys. 53(Special Issue), 71–74 (2008). http://archive.ujp.bitp.kiev.ua/files/journals/53/si/53SI15p.pdf

    Google Scholar 

  2. H. Fröhlich, Interaction of electrons with lattice vibrations. Proc. R. Soc. London A 215(1122), 291–298 (1952). https://doi.org/10.1098/rspa.1952.0212

    Article  ADS  MATH  Google Scholar 

  3. H. Fröhlich, On the theory of superconductivity: the one-dimensional case. Proc. R. Soc. London A 223(1154), 296–305 (1954). https://doi.org/10.1098/rspa.1954.0116

    Article  ADS  MATH  Google Scholar 

  4. R.E. Peierls, Quantum Theory of Solids (Clarendon Press, Oxford, 1955). https://doi.org/10.1093/acprof:oso/9780198507819.001.0001

  5. T. Holstein, Studies of polaron motion: Part I. The molecular-crystal model. Ann. Phys. 8(3), 325–342 (1959). https://doi.org/10.1016/0003-4916(59)90002-8

    Article  ADS  MATH  Google Scholar 

  6. T. Holstein, Studies of polaron motion: Part II. The “small” polaron. Ann. Phys. 8(3), 343–389 (1959). https://doi.org/10.1016/0003-4916(59)90003-X

    Article  ADS  MATH  Google Scholar 

  7. A.A. Eremko, Peierls–Fröhlich problem in the continuum approximation. Phys. Rev. B 46(7), 3721–3728 (1992). https://doi.org/10.1103/PhysRevB.46.3721

    Article  ADS  Google Scholar 

  8. A.A. Eremko, Mean-field solution of the continuum Fröhlich problem at finite temperature. Phys. Rev. B 50(8), 5160–5170 (1994). https://doi.org/10.1103/PhysRevB.50.5160

    Article  ADS  Google Scholar 

  9. A.S. Davydov, N.I. Kislukha, Solitary excitons in one-dimensional molecular chains. Phys. Stat. Solidi B 59(2), 465–470 (1973). https://doi.org/10.1002/pssb.2220590212

    Article  ADS  Google Scholar 

  10. A.S. Davydov, Solitons in quasi-one-dimensional molecular structures. Sov. Phys.–Uspekhi 25(12), 898–918 (1982). https://doi.org/10.1070/PU1982v025n12ABEH005012

    Article  ADS  MathSciNet  Google Scholar 

  11. L.A. Pastur, V.V. Slavin, A.A. Krivchikov, One-dimensional narrow-band conductors. Fiz. Nizk. Temp. 47(9), 779–803 (2021)[Low Temp. Phys. 47(9), 715–739 (2021)]. https://doi.org/10.1063/10.0005796

    Article  Google Scholar 

  12. J. Appel, Polarons. Solid State Phys. 21, 193–391 (1968). https://doi.org/10.1016/S0081-1947(08)60741-9

    Article  Google Scholar 

  13. V.D. Lakhno, Pekar’s ansatz and the strong coupling problem in polaron theory. Phys.–Uspekhi 58(3), 295–308 (2015). https://doi.org/10.3367/UFNe.0185.201503d.0317

    Article  ADS  Google Scholar 

  14. J.G. da Silva, B.G. Enders, G.M. e Silva, A.L. de Almeida Fonseca, Electron-phonon coupling in armchair silicene nanoribbons. Phys. Lett. A 383(33), 125954 (2019). https://doi.org/10.1016/j.physleta.2019.125954

    Article  Google Scholar 

  15. V. Cataudella, G. De Filipps, G. Iadonisi, Polaron features of the one-dimensional Holstein molecular crystal model. Phys. Rev. B 62(3), 1496–1499 (2000). https://doi.org/10.1103/PhysRevB.62.1496

    Article  ADS  Google Scholar 

  16. V. Cataudella, G. De Filippis, C.A. Perroni, Single polaron properties in different electron phonon models, in Polarons in Advanced Materials, vol. 103, ed. by A.S. Alexandrov (Springer, Dordrecht, 2007), pp.149–189

    Chapter  Google Scholar 

  17. A.C. Scott, Davydov’s soliton. Phys. Rep. 217(1), 1–67 (1992). https://doi.org/10.1016/0370-1573(92)90093-F

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. J. Luo, B.M.A.G. Piette, A generalised Davydov–Scott model for polarons in linear peptide chains. Eur. Phys. J. B 90(8), 155 (2017). https://doi.org/10.1140/epjb/e2017-80209-2

    Article  ADS  MathSciNet  Google Scholar 

  19. D.D. Georgiev, J.F. Glazebrook, Launching of Davydov solitons in protein \(\alpha \)-helix spines. Phys. E 124, 114332 (2020). https://doi.org/10.1016/j.physe.2020.114332

    Article  Google Scholar 

  20. Y. Zhao, K.-W. Sun, L.-P. Chen, M. Gelin, The hierarchy of Davydov’s ansätze and its applications. WIREs Comput. Mol. Sci. 12(4), e1589 (2022). https://doi.org/10.1002/wcms.1589

    Article  Google Scholar 

  21. J.-P. Pouget, The Peierls instability and charge density wave in one-dimensional electronic conductors. Compt. Rend. Phys. 17(3–4), 332–356 (2016). https://doi.org/10.1016/j.crhy.2015.11.008

    Article  ADS  Google Scholar 

  22. S. van Smaalen, The Peierls transition in low-dimensional electronic crystals. Acta Cryst. A 61(1), 51–61 (2005). https://doi.org/10.1107/S0108767304025437

    Article  Google Scholar 

  23. O.O. Vakhnenko, Semidiscrete integrable systems inspired by the Davydov–Kyslukha model. Ukr. J. Phys. 58(11), 1092–1107 (2013). https://doi.org/10.15407/ujpe58.11.1092

    Article  Google Scholar 

  24. O.O. Vakhnenko, Nonlinear integrable systems containing the canonical subsystems of distinct physical origins. Phys. Lett. A 384(3), 126081 (2020). https://doi.org/10.1016/j.physleta.2019.126081

    Article  MathSciNet  MATH  Google Scholar 

  25. O.O. Vakhnenko, Four-component integrable systems inspired by the Toda and the Davydov–Kyslukha models. Wave Motion 88, 1–12 (2019). https://doi.org/10.1016/j.wavemoti.2019.01.013

    Article  MathSciNet  MATH  Google Scholar 

  26. O.O. Vakhnenko, Nonlinear integrable dynamics of coupled vibrational and intra-site excitations on a regular one-dimensional lattice. Phys. Lett. A 405, 127431 (2021). https://doi.org/10.1016/j.physleta.2021.127431

    Article  MathSciNet  MATH  Google Scholar 

  27. O.O. Vakhnenko, Coupling-managed criticality in nonlinear dynamics of an integrable exciton-phonon system on a one-dimensional lattice. Fiz. Nizk. Temp. 47(12), 1186–1190 (2021) [Low Temp. Phys. 47(12), 1084–1088 (2021)]. https://doi.org/10.1063/10.0007084

    Article  Google Scholar 

  28. O.O. Vakhnenko, A.P. Verchenko, Nonlinear system of \({\cal{P} }{\cal{T} }\)-symmetric excitations and Toda vibrations integrable by the Darboux–Bäcklund dressing method. Proc. R. Soc. A 477(2256), 20210562 (2021). https://doi.org/10.1098/rspa.2021.0562

    Article  ADS  Google Scholar 

  29. C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having \({\cal{P} }{\cal{T} }\) symmetry. Phys. Rev. Lett. 80(24), 5243–5246 (1998). https://doi.org/10.1103/PhysRevLett.80.5243

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. C.M. Bender, Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70(6), 947–1018 (2007). https://doi.org/10.1088/0034-4885/70/6/R03

    Article  ADS  MathSciNet  Google Scholar 

  31. V.V. Konotop, J. Yang, D.A. Zezyulin, Nonlinear waves in \({\cal{P} }{\cal{T} }\)-symmetric systems. Rev. Mod. Phys. 88(3), 035002 (2016). https://doi.org/10.1103/RevModPhys.88.035002

    Article  ADS  Google Scholar 

  32. A.S. Davydov, Quantum Mechanics (Pergamon Press, Oxford–New York, 1976). https://doi.org/10.1016/C2013-0-05735-0

  33. L.H. Ryder, Quantum Field Theory (Cambridge University Press, Cambridge, 1985). https://doi.org/10.1017/CBO9780511813900

  34. T.D. Lee, F.E. Low, D. Pines, The motion of slow electrons in a polar crystal. Phys. Rev. 90(2), 297–302 (1953). https://doi.org/10.1103/PhysRev.90.297

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. T.-D. Lee, D. Pines, Interaction of a nonrelativistic particle with a scalar field with application to slow electrons in polar crystals. Phys. Rev. 92(4), 883–889 (1953). https://doi.org/10.1103/PhysRev.92.883

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. A.S. Davydov, Théorie du Solide (Mir, Moscou, 1980)

    Google Scholar 

  37. A.S. Davydov, Theory of Molecular Excitons (Plenum Press, New York–London, 1971). https://doi.org/10.1007/978-1-4899-5169-4

  38. Y.N. Joglekar, C. Thompson, D.D. Scott, G. Vemuri, Optical waveguide arrays: quantum effects and PT symmetry breaking. Eur. Phys. J. Appl. Phys. 63(3), 30001 (2013). https://doi.org/10.1051/epjap/2013130240

    Article  ADS  Google Scholar 

  39. A.A. Zyablovsky, A.P. Vinogradov, A.A. Pukhov, A.V. Dorofeenko, A.A. Lisyansky, PT-symmetry in optics. Phys.–Uspekhi 57(11), 1063–1082 (2014). https://doi.org/10.3367/UFNe.0184.201411b.1177

    Article  ADS  Google Scholar 

  40. R. El-Ganainy, K.G. Makris, M. Khajavikhan, Z.H. Musslimani, S. Rotter, D.N. Christodoulides, Non-Hermitian physics and PT symmetry. Nat. Phys. 14(1), 11–19 (2018). https://doi.org/10.1038/nphys4323

    Article  Google Scholar 

  41. F. Lederer, G.I. Stegeman, D.N. Christodoulides, G. Assanto, M. Segev, Ya. Silberberg, Discrete solitons in optics. Phys. Rep. 463(1–3), 1–126 (2008). https://doi.org/10.1016/j.physrep.2008.04.004

    Article  ADS  Google Scholar 

  42. A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D.N. Christodoulides, U. Peschel, Parity-time synthetic photonic lattices. Nature 488(7410), 167–171 (2012). https://doi.org/10.1038/nature11298

    Article  ADS  Google Scholar 

  43. W. Tan, Y. Sun, H. Chen, Sh.-Q. Shen, Photonic simulation of topological excitations in metamaterials. Sci. Rep. 4, 3842 (2014). https://doi.org/10.1038/srep03842

    Article  ADS  Google Scholar 

  44. M.I. Hussein, M.J. Leamy, M. Ruzzene, Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook. Appl. Mech. Rev. 66(4), 040802 (2014). https://doi.org/10.1115/1.4026911

    Article  ADS  Google Scholar 

  45. L. Ferrari, Ch. Wu, D. Lepage, X. Zhang, Zh. Liu, Hyperbolic metamaterials and their applications. Progr. Quant. Electron. 40, 1–40 (2015). https://doi.org/10.1016/j.pquantelec.2014.10.001

    Article  Google Scholar 

  46. B. Li, Zh. Li, J. Christensen, K.T. Tan, Dual Dirac cones in elastic Lieb-like lattice metamaterials. Appl. Phys. Lett. 114(8), 081906 (2019). https://doi.org/10.1063/1.5085782

    Article  ADS  Google Scholar 

  47. F. Zangeneh-Nejad, A. Alù, R. Fleury, Topological wave insulators: a review. Compt. Rend. Phys. 21(4–5), 467–499 (2020). https://doi.org/10.5802/crphys.3

    Article  Google Scholar 

  48. A. Dwivedi, A. Banerjee, B. Bhattacharya, Simultaneous energy harvesting and vibration attenuation in piezo-embedded negative stiffness metamaterial. J. Intel. Mater. Syst. Struct. 31(8), 1076–1090 (2020). https://doi.org/10.1177/1045389X20910261

    Article  Google Scholar 

  49. M. Rothe, Yu. Zhao, J. Müller, G. Kewes, C.T. Koch, Ya.. Lu, O. Benson, Self-assembly of plasmonic nanoantenna-waveguide structures for subdiffractional chiral sensing. ACS Nano 15(1), 351–361 (2021). https://doi.org/10.1021/acsnano.0c05240

    Article  Google Scholar 

  50. J.-C. Deinert, D.A. Iranzo, R. Pérez, X. Jia, H.A. Hafez, I. Ilyakov, N. Awari, M. Chen, M. Bawatna, A.N. Ponomaryov, S. Germanskiy, M. Bonn, F.H.L. Koppens, D. Turchinovich, M. Gensch, S. Kovalev, K.-J. Tielrooij, Grating-graphene metamaterial as a platform for terahertz nonlinear photonics. ACS Nano 15(1), 1145–1154 (2021). https://doi.org/10.1021/acsnano.0c08106

    Article  Google Scholar 

  51. L. Luo, J. Luo, H. Chu, Y. Lai, Pseudo-Hermitian systems constructed by transformation optics with robustly balanced loss and gain. Adv. Photon. Res. 2(2), 2000081 (2021). https://doi.org/10.1002/adpr.202000081

    Article  Google Scholar 

  52. L.D. Faddeev, L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons (Springer-Verlag, Berlin, 1987). https://doi.org/10.1007/978-3-540-69969-9

  53. M.J. Ablowitz, B. Prinari, A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge University Press, New York, 2004). https://doi.org/10.1017/CBO9780511546709

  54. V.S. Gerdjikov, On the integrability of Ablowitz–Ladik models with local and nonlocal reductions. J. Phys.: Conf. Ser. 1205, 012015 (2019). https://doi.org/10.1088/1742-6596/1205/1/012015

    Article  Google Scholar 

  55. V.B. Matveev, Darboux transformation and the explicit solutions of differential-difference and difference-difference evolution equations. I. Lett. Math. Phys. 3(3), 217–222 (1979). https://doi.org/10.1007/BF00405296

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. V.B. Matveev, M.A. Salle, Differential-difference evolution equations. II (Darboux transformation for the Toda lattice). Lett. Math. Phys. 3(5), 425–429 (1979). https://doi.org/10.1007/BF00397217

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. M.A. Sall’, Darboux transformations for non-Abelian and nonlocal equations of the Toda chain type. Theor. Math. Phys. 53(2), 1092–1099 (1982). https://doi.org/10.1007/BF01016678

    Article  Google Scholar 

  58. A.R. Chowdhury, G. Mahato, A Darboux–Bäcklund transformation associated with a discrete nonlinear Schrödinger equation. Lett. Math. Phys. 7(4), 313–317 (1983). https://doi.org/10.1007/BF00420181

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. A. Pickering, Z.-N. Zhu, Darboux–Bäcklund transformation and explicit solutions to a hybrid lattice of the relativistic Toda lattice and the modified Toda lattice. Phys. Lett. A 378(21), 1510–1513 (2014). https://doi.org/10.1016/j.physleta.2014.03.055

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. O.O. Vakhnenko, Nonlinear integrable system of coherently coupled excitations on an intercalated ladder lattice. Eur. Phys. J. Plus 133(6), 243 (2018). https://doi.org/10.1140/epjp/i2018-12106-y

    Article  Google Scholar 

  61. Y. Hanif, U. Saleem, Broken and unbroken \({\cal{P} }{\cal{T} }\)-symmetric solutions of semi-discrete nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 98(1), 233–244 (2019). https://doi.org/10.1007/s11071-019-05185-1

    Article  MATH  Google Scholar 

  62. H.-T. Wang, X.-Y. Wen, Soliton elastic interactions and dynamical analysis of a reduced integrable nonlinear Schrödinger system on a triangular-lattice ribbon. Nonlinear Dyn. 100(2), 1571–1587 (2020). https://doi.org/10.1007/s11071-020-05587-6

    Article  MATH  Google Scholar 

  63. O.O. Vakhnenko, Prototype and reduced nonlinear integrable lattice systems with the modulated pulson behavior. Wave Motion 104, 102745 (2021). https://doi.org/10.1016/j.wavemoti.2021.102745

    Article  MathSciNet  MATH  Google Scholar 

  64. O.O. Vakhnenko, Nonlinear integrable model of Frenkel-like excitations on a ribbon of triangular lattice. J. Math. Phys. 56(3), 033505 (2015). https://doi.org/10.1063/1.4914510

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. O.O. Vakhnenko, Integrable nonlinear Schrödinger system on a lattice with three structural elements in the unit cell. J. Math. Phys. 59(5), 053504 (2018). https://doi.org/10.1063/1.4994622

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. P.G. Caudrey, Differential and discrete spectral problems and their inverses. North-Holland Math. Stud. 97, 221–232 (1984). https://doi.org/10.1016/S0304-0208(08)71267-2

    Article  MathSciNet  MATH  Google Scholar 

  67. O.O. Vakhnenko, Three component nonlinear dynamical system generated by the new third-order discrete spectral problem. J. Phys. A: Math. Gen. 36(20), 5405–5430 (2003). https://doi.org/10.1088/0305-4470/36/20/305

    Article  ADS  MathSciNet  MATH  Google Scholar 

  68. O.O. Vakhnenko, A discrete nonlinear model of three coupled dynamical fields integrable by the Caudrey method. Ukr. J. Phys. 48(7), 653–666 (2003). http://archive.ujp.bitp.kiev.ua/files/journals/48/7/480706p.pdf

    MathSciNet  Google Scholar 

  69. M. Toda, Studies of a non-linear lattice. Phys. Rep. 18(1), 1–123 (1975). https://doi.org/10.1016/0370-1573(75)90018-6

    Article  ADS  MathSciNet  Google Scholar 

  70. M. Toda, Theory of Nonlinear Lattices (Springer-Verlag, Berlin–Heidelberg–New York, 1981). https://doi.org/10.1007/978-3-642-83219-2

  71. M. Toda, K. Sogo, Discovery of lattice soliton. J. Phys. A: Math. Theor. 51(6), 060201 (2018). https://doi.org/10.1088/1751-8121/aaa256

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. S.K. Ivanov, Ya.V. Kartashov, M. Heinrich, A. Szameit, L. Torner, V.V. Konotop, Topological dipole Floquet solitons. Phys. Rev. A 103(5), 053507 (2021). https://doi.org/10.1103/PhysRevA.103.053507

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work has been supported by the National Academy of Sciences of Ukraine within the Project No 0122U002279 (Conformational mechanics of DNA macromolecule under the influence of biologically active molecules and ions). The Authors are thankful to the Reviewer for the suggestion to provide the physical background of the nonlinear dynamical system under study. The Authors are greatly indebted to Dr. Olga Kocherga for the valuable recommendations on English grammar.

Author information

Authors and Affiliations

Authors

Contributions

Oleksiy O. Vakhnenko: Analytical calculations. Andriy P. Verchenko: Computer calculations.

Corresponding author

Correspondence to Oleksiy O. Vakhnenko.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakhnenko, O.O., Verchenko, A.P. Dipole–monopole alternative in nonlinear dynamics of an integrable gauge-coupled exciton-phonon system on a one-dimensional lattice. Eur. Phys. J. Plus 137, 1176 (2022). https://doi.org/10.1140/epjp/s13360-022-03335-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03335-w

Navigation