Skip to main content
Log in

Investigation of analog resistive switching in ZrO2 nanostructured film

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article, we report the synthesis of Zirconium Oxide (ZrO2) nanostructure by hydrothermal method and fabrication of resistive switching device [FTO/ZrO2/Ag] using spray coated ZrO2 nanostructured film. The XRD spectrum of the film indicates the formation of a single-phase ZrO2 nanostructure. I–V measurement of the fabricated device shows gradual set and reset at 0.8 and − 0.7 V, respectively, which confirms the presence of analog switching in the device. The conduction mechanism has been explored with a I–V fitting model in high resistive state and low resistive state, respectively. In high resistive state, the device stays in the ohmic region at lower bias however at higher bias due to filling of available traps the electrical transport is dominated by space charge limited conduction (SCLC). On the other hand, in low resistive state, charge carriers are detrapped and the electrical conduction process is again governed by SCLC conduction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. S. Munjal, N. Khare, Advances in resistive switching based memory devices. J. Phys. D Appl. Phys. 52, 433002 (2019)

    Article  Google Scholar 

  2. C.-H. Lai, C.-Y. Liu, H. Yang, Bipolar resistance switching characteristics in zirconium oxide. Ferroelectrics 457, 146–152 (2013)

    Article  Google Scholar 

  3. H. Mähne, H. Wylezich, F. Hanzig, S. Slesazeck, D. Rafaja, T. Mikolajick, Analog resistive switching behavior of Al/Nb2O5/Al device. Semicond. Sci. Technol. 29, 104002 (2014)

    Article  ADS  Google Scholar 

  4. Y. Yuan, X. Cao, Y. Sun, J. Su, C. Liu, L. Cheng, Y. Li, L. Yuan, H. Zhang, J. Li, Intrinsic mechanism in nonvolatile polycrystalline zirconium oxide sandwiched structure. J. Mater. Sci. Mater. Electron. 29, 2301–2306 (2018)

    Article  Google Scholar 

  5. W. Chien, Y. Chen, E. Lai, F. Lee, Y. Lin, A.T. Chuang, K. Chang, Y. Yao, T. Chou, H. Lin, A study of the switching mechanism and electrode material of fully CMOS compatible tungsten oxide ReRAM. Appl. Phys. A 102, 901–907 (2011)

    Article  ADS  Google Scholar 

  6. Y. Ma, D. Li, A.A. Herzing, D.A. Cullen, B.T. Sneed, K.L. More, N. Nuhfer, J.A. Bain, M. Skowronski, Formation of the conducting filament in TaOx-resistive switching devices by thermal-gradient-induced cation accumulation. ACS Appl. Mater. Interfaces 10, 23187–23197 (2018)

    Article  Google Scholar 

  7. M. Chowdhury, B. Long, R. Jha, V. Devabhaktuni, A fundamental understanding of nickel oxide based resistive random access memory with high percentage of oxygen. Solid State Electron. 68, 1–3 (2012)

    Article  ADS  Google Scholar 

  8. A. Kumari, S.M. Shanbogh, I. Udachyan, S. Kandaiah, A. Roy, V. Varade, A. Ponnam, Interface-driven multifunctionality in two-dimensional TiO2 nanosheet/poly (dimercaptothiadiazole-triazine) hybrid resistive random access memory device. ACS Appl. Mater. Interfaces 12, 56568–56578 (2020)

    Article  Google Scholar 

  9. S. Yu, R. Jeyasingh, Y. Wu, H.-S.P. Wong, Characterization of low-frequency noise in the resistive switching of transition metal oxide HfO2. Phys. Rev. B 85, 045324 (2012)

    Article  ADS  Google Scholar 

  10. D. Khakhulin, Z. Vakulov, V. Smirnov, R. Tominov, J.-G. Yoon, O. Ageev, Resistive switching in ZnO/ZnO: in nanocomposite, in: Journal of Physics: Conference Series, IOP Publishing, (2017), pp. 092008

  11. S. Munjal, N. Khare, Multilevel resistive and magnetization switching in Cu/CoFe2O4/Pt device: coexistence of ionic and metallic conducting filaments. Appl. Phys. Lett. 113, 243501 (2018)

    Article  ADS  Google Scholar 

  12. T.D. Dongale, A.C. Khot, A.V. Takaloo, K.R. Son, T.G. Kim, Multilevel resistive switching and synaptic plasticity of nanoparticulated cobaltite oxide memristive device. J. Mater. Sci. Technol. 78, 81–91 (2021)

    Article  Google Scholar 

  13. X. Li, H. Wu, B. Gao, W. Wu, D. Wu, N. Deng, J. Cai, H. Qian, Electrode-induced digital-to-analog resistive switching in TaOx-based RRAM devices. Nanotechnology 27, 305201 (2016)

    Article  Google Scholar 

  14. F. Cüppers, S. Menzel, C. Bengel, A. Hardtdegen, M. Von Witzleben, U. Böttger, R. Waser, S. Hoffmann-Eifert, Exploiting the switching dynamics of HfO2-based ReRAM devices for reliable analog memristive behavior. APL Mater. 7, 091105 (2019)

    Article  ADS  Google Scholar 

  15. Y.-F. Wang, Y.-C. Lin, I. Wang, T.-P. Lin, T.-H. Hou, Characterization and modeling of nonfilamentary Ta/TaOx/TiO2/Ti analog synaptic device. Sci. Rep. 5, 1–9 (2015)

    Google Scholar 

  16. F.M. Simanjuntak, T. Ohno, S. Chandrasekaran, T.-Y. Tseng, S. Samukawa, Neutral oxygen irradiation enhanced forming-less ZnO-based transparent analog memristor devices for neuromorphic computing applications. Nanotechnology 31, 26LT01 (2020)

    Article  Google Scholar 

  17. W.-J. Chen, C.-H. Cheng, P.-E. Lin, Y.-T. Tseng, T.-C. Chang, J.-S. Chen, Analog resistive switching and synaptic functions in WOx/TaOx bilayer through redox-induced trap-controlled conduction. ACS Appl. Electron. Mater. 1, 2422–2430 (2019)

    Article  Google Scholar 

  18. S. Munjal, N. Khare, Electroforming free controlled bipolar resistive switching in Al/CoFe2O4/FTO device with self-compliance effect. Appl. Phys. Lett. 112, 073502 (2018)

    Article  ADS  Google Scholar 

  19. S.-J. Park, B.-S. Yu, J.-Y. Jeon, B.-C. Kang, T.-J. Ha, Sol-gel based zirconium dioxide dielectrics by oxygen-annealing at low temperature for highly stable and robust flexible resistive random access memory. J. Alloy. Compd. 825, 154086 (2020)

    Article  Google Scholar 

  20. A.A. Sivkov, Y. Xing, Z. Minden, Z. Xiao, K.Y. Cheong, F. Zhao, Resistive switching properties of ZrO2 film by plasma-enhanced atomic layer deposition for non-volatile memory applications. J. Electron. Mater. 50, 5396–5401 (2021)

    Article  ADS  Google Scholar 

  21. Y. Lee, J. Jung, D. Shin, J.J. Pak, Effect of UV irradiation on the resistive switching characteristics of low-temperature solution-processed ZrO2 RRAM. Semicond. Sci. Technol. 36, 085004 (2021)

    Article  ADS  Google Scholar 

  22. D. Lee, A.S. Sokolov, B. Ku, Y.-R. Jeon, H.T. Kim, G.H. Kim, C. Choi, Improved switching and synapse characteristics using PEALD SiO2 thin film in Cu/SiO2/ZrO2/Pt device. Appl. Surf. Sci. 547, 149140 (2021)

    Article  Google Scholar 

  23. M.Z. Ansari, M. Faraz, S. Munjal, V. Kumar, N. Khare, Highly dispersible and uniform size Cu2ZnSnS4 nanoparticles for photocatalytic application. Adv. Powder Technol. 28, 2402–2409 (2017)

    Article  Google Scholar 

  24. W. Raza, M. Faraz, Novel g-C3N4/Fe-ZnO/RGO nanocomposites with boosting visible light photocatalytic activity for MB, Cr (VI), and outstanding catalytic activity toward para-nitrophenol reduction. Nanotechnology 31, 325603 (2020)

    Article  Google Scholar 

  25. S. Kumar, M. Faraz, N. Khare, Enhanced thermoelectric properties of Sb2Te3-graphene nanocomposite. Mater. Res. Express 6, 085079 (2019)

    Article  ADS  Google Scholar 

  26. M. Faraz, H.H. Singh, N. Khare, A progressive strategy for harvesting mechanical energy using flexible PVDF-rGO-MoS2 nanocomposites film-based piezoelectric nanogenerator. J. Alloys Compd. 890, 161840 (2022)

    Article  Google Scholar 

  27. A.K. Gautam, M. Faraz, N. Khare, Enhanced thermoelectric properties of tungsten oxide-reduced graphene oxide nanocomposites. Ceram. Int. 47, 27885–27889 (2021)

    Article  Google Scholar 

  28. T.S. Bhat, C.C. Revadekar, S.S. Patil, T.D. Dongale, D.K. Kim, P.S. Patil, Photo-induced resistive switching in CdS-sensitized TiO2 nanorod array memristive device. J. Mater. Sci. Mater. Electron. 31(13), 10919–10929 (2020)

    Article  Google Scholar 

  29. E.W. Lim, R. Ismail, Conduction mechanism of valence change resistive switching memory: a survey. Electronics 4, 586–613 (2015)

    Article  Google Scholar 

  30. D. Shang, Q. Wang, L. Chen, R. Dong, X. Li, W. Zhang, Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag∕ La0.7 Ca0.3 MnO3∕ Pt heterostructures. Phys. Rev. B 73, 245427 (2006)

    Article  ADS  Google Scholar 

  31. M.M. Rehman, B.S. Yang, Y.J. Yang, K.S. Karimov, K.H. Choi, Effect of device structure on the resistive switching characteristics of organic polymers fabricated through all printed technology. Curr. Appl. Phys. 17(4), 533–540 (2017)

    Article  ADS  Google Scholar 

  32. Y. Cui, H. Peng, S. Wu, R. Wang, T. Wu, Complementary charge trapping and ionic migration in resistive switching of rare-earth manganite TbMnO3. ACS Appl. Mater. Interfaces 5(4), 1213–1217 (2013)

    Article  Google Scholar 

  33. T. You, N. Du, S. Slesazeck, T. Mikolajick, G. Li, D. Bürger, I. Skorupa, H. Stöcker, B. Abendroth, A. Beyer, K. Volz, Bipolar electric-field enhanced trapping and detrapping of mobile donors in BiFeO3 memristors. ACS Appl. Mater. Interfaces 6(22), 19758–19765 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support provided through NNetRA by the Ministry of Electronics and Information Technology (MeitY, project no. RP03530) and the Department of Science and Technology (DST, project no. MI01756). Nanoscale Research Facility (NRF) is highly acknowledged for using several characterization facilities. One of the authors, A. S. is grateful to IIT Delhi for providing the institute research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeraj Khare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Faraz, M. & Khare, N. Investigation of analog resistive switching in ZrO2 nanostructured film. Eur. Phys. J. Plus 137, 1197 (2022). https://doi.org/10.1140/epjp/s13360-022-03332-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03332-z

Navigation