Skip to main content
Log in

Mechanical properties of two-dimensional sheets of TiO\(_2\): a DFT study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Materials with a two-dimensional (2D) structure have emerged as an important component of modern technologies. Using 2D materials in many applications results in strain being created in the material. Materials respond to strain in different ways depending on their mechanical properties. The present work examines the mechanical properties of two 2D nanosheets of TiO\(_2\), namely hexagonal nanosheet (HNS) and lepidocrocite nanosheet (LNS). In order to accomplish this, we use the stress–strain theory in combination with first-principles density functional theory (DFT) calculations to investigate the mechanical characteristics, including stiffness constants, Young’s modulus, Poisson’s ratio, ideal strength, and critical strain. We validate our calculations by obtaining the important mechanical properties of bulk rutile TiO\(_2\) and comparing them with the theoretical and experimental values reported by others. Then, we compare the mechanical properties of TiO\(_2\) LNS and HNS using the same computational approach. It appears that LNS is stiffer than HNS, so we analyze structural differences between the two in order to determine the reasons for this. It has been observed that under small tensile strains, the responses, including induced stress, transverse contraction, and bond length change, are linear for both HNSs and LNSs. In general, LNS displays anisotropic responses, whereas HNS exhibits isotropic responses under small tensile strains and nearly isotropic responses under higher levels of strain. Finally, we compare the mechanical properties of HNS and LNS with those of graphene, h-BN, phosphorene, and hexagonal antimonene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. L. Wang, T. Sasaki, Titanium oxide nanosheets: Graphene analogues with versatile functionalities. Chem. Rev. 114(19), 9455–9486 (2014). https://doi.org/10.1021/cr400627u

    Article  Google Scholar 

  2. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107(7), 2891–2959 (2007). https://doi.org/10.1021/cr0500535

    Article  Google Scholar 

  3. M. Xu, Y. Gao, E.M. Moreno, M. Kunst, M. Muhler, Y. Wang, H. Idriss, C. Wöll, Photocatalytic activity of bulk tio 2 anatase and rutile single crystals using infrared absorption spectroscopy. Phys. Rev. Lett. 106(13), 138302 (2011)

    Article  ADS  Google Scholar 

  4. H.A. Eivari, S.A. Ghasemi, H. Tahmasbi, S. Rostami, S. Faraji, R. Rasoulkhani, S. Goedecker, M. Amsler, Two-dimensional hexagonal sheet of tio2. Chem. Mater. 29(20), 8594–8603 (2017). https://doi.org/10.1021/acs.chemmater.7b02031

    Article  Google Scholar 

  5. R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, F. Zamora, 2d materials: to graphene and beyond. Nanoscale 3(1), 20–30 (2011). https://doi.org/10.1039/c0nr00323a

    Article  ADS  Google Scholar 

  6. H. Eivari, Z. Sohbatzadeh, P. Mele, M. Assadi, Low thermal conductivity: Fundamentals and theoretical aspects in thermoelectric applications. Mater. Today. Energy. 21, 100744 (2021)

    Article  Google Scholar 

  7. D.V. Fakhrabad, M. Yeganeh, Investigation of the effect of lattice thermal conductivity on the thermoelectric performance of scn monolayer. Mater. Sci. Semicond. Process. 148, 106770 (2022)

    Article  Google Scholar 

  8. D.V. Fakhrabad, M. Yeganeh, Piezoelectric properties in two-dimensional gec and its surface functionalization by chlorination, fluorination, and chloro-fluorination. Mater. Sci. Semicond. Process. 148, 106797 (2022)

    Article  Google Scholar 

  9. M. Mousavi, S.T. Yazdi, M.B. Mohagheghi, Magneto-transport and magneto-optical properties of cr-alloyed sno2 thin films: A correlation between structural and magnetic behaviors. Solid. State. Commun. 298, 113641 (2019)

    Article  Google Scholar 

  10. S. Goedecker, Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120(21), 9911–9917 (2004)

    Article  ADS  Google Scholar 

  11. M. Amsler, S. Goedecker, Crystal structure prediction using the minima hopping method. J. Chem. Phys. 133(22), 224104 (2010). https://doi.org/10.1063/1.3512900

    Article  ADS  Google Scholar 

  12. S.A. Ghasemi, A. Hofstetter, S. Saha, S. Goedecker, Interatomic potentials for ionic systems with density functional accuracy based on charge densities obtained by a neural network. Phys. Revi. B 92(4), 045131 (2015). https://doi.org/10.1103/physrevb.92.045131

    Article  ADS  Google Scholar 

  13. R. Hafizi, S.A. Ghasemi, S.J. Hashemifar, H. Akbarzadeh, A neural-network potential through charge equilibration for ws2: From clusters to sheets. J. Chem. Phys. 147(23), 234306 (2017)

    Article  ADS  Google Scholar 

  14. S. Faraji, S.A. Ghasemi, S. Rostami, R. Rasoulkhani, B. Schaefer, S. Goedecker, M. Amsler, High accuracy and transferability of a neural network potential through charge equilibration for calcium fluoride. Phys. Rev. B 95(10), 104105 (2017)

    Article  ADS  Google Scholar 

  15. R. Rasoulkhani, H. Tahmasbi, S.A. Ghasemi, S. Faraji, S. Rostami, M. Amsler, Energy landscape of zno clusters and low-density polymorphs. Phys. Rev. B 96(6), 064108 (2017)

    Article  ADS  Google Scholar 

  16. G. Liu, L. Wang, H.G. Yang, H.-M. Cheng, G.Q.M. Lu, Titania-based photocatalysts—crystal growth, doping and heterostructuring. J. Mater. Chem. 20(5), 831–843 (2010). https://doi.org/10.1039/b909930a

    Article  ADS  Google Scholar 

  17. M. Osada, T. Sasaki, Two-dimensional dielectric nanosheets: Novel nanoelectronics from nanocrystal building blocks. Adv. Mater. 24(2), 210–228 (2011). https://doi.org/10.1002/adma.201103241

    Article  Google Scholar 

  18. M. Fehse, E. Ventosa, Is TiO2(b) the future of titanium-based battery materials? Chem. Plus. Chem. 80(5), 785–795 (2015). https://doi.org/10.1002/cplu.201500038

    Article  Google Scholar 

  19. I.M. Markus, S. Engelke, M. Shirpour, M. Asta, M. Doeff, Experimental and computational investigation of lepidocrocite anodes for sodium-ion batteries. Chem. Mater. 28(12), 4284–4291 (2016). https://doi.org/10.1021/acs.chemmater.6b01074

    Article  Google Scholar 

  20. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453(7195), 638–641 (2008). https://doi.org/10.1038/nature06964

    Article  ADS  Google Scholar 

  21. D.A.H. Hanaor, M.H.N. Assadi, S. Li, A. Yu, C.C. Sorrell, Ab initio study of phase stability in doped TiO2. Comput. Mech. 50(2), 185–194 (2012). https://doi.org/10.1007/s00466-012-0728-4

    Article  MATH  Google Scholar 

  22. M.H.N. Assadi, D.A.H. Hanaor, The effects of copper doping on photocatalytic activity at (101) planes of anatase TiO2: A theoretical study. Appl. Surf. Sci. 387, 682–689 (2016). https://doi.org/10.1016/j.apsusc.2016.06.178

    Article  ADS  Google Scholar 

  23. H. Asnaashari Eivari, S.A. Ghasemi, Comparison between pbe and hse06 functionals for the calculation of electronic band-structure of tio2. J. Res. Many. body. Syst. 9(3), 1–15 (2019)

    Google Scholar 

  24. X. Yan, G. Liu, L. Wang, Y. Wang, X. Zhu, J. Zou, G.Q.M. Lu, Antiphotocorrosive photocatalysts containing CdS nanoparticles and exfoliated TiO2 nanosheets. J. Mater. Res. 25(1), 182–188 (2010). https://doi.org/10.1557/jmr.2010.0007

    Article  ADS  Google Scholar 

  25. E. Doustkhah, M.H.N. Assadi, K. Komaguchi, N. Tsunoji, M. Esmat, N. Fukata, O. Tomita, R. Abe, B. Ohtani, Y. Ide, In situ blue titania via band shape engineering for exceptional solar h2 production in rutile tio2. Appl. Catal. B 297, 120380 (2021)

    Article  Google Scholar 

  26. D.R. Kripalani, A.A. Kistanov, Y. Cai, M. Xue, K. Zhou, Strain engineering of antimonene by a first-principles study: Mechanical and electronic properties. Phys. Rev. B 98(8), 085410 (2018). https://doi.org/10.1103/physrevb.98.085410

    Article  ADS  Google Scholar 

  27. J. Kang, J. Li, F. Wu, S.-S. Li, J.-B. Xia, Elastic, electronic, and optical properties of two-dimensional graphyne sheet. J. Phys. Chem. C 115(42), 20466–20470 (2011). https://doi.org/10.1021/jp206751m

    Article  Google Scholar 

  28. M. Topsakal, S. Cahangirov, S. Ciraci, The response of mechanical and electronic properties of graphane to the elastic strain. Appl. Phys. Lett. 96(9), 091912 (2010). https://doi.org/10.1063/1.3353968

    Article  ADS  Google Scholar 

  29. W.-J. Yin, S. Chen, J.-H. Yang, X.-G. Gong, Y. Yan, S.-H. Wei, Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction. Appl. Phys. Lett. 96(22), 221901 (2010). https://doi.org/10.1063/1.3430005

    Article  ADS  Google Scholar 

  30. G. Rajender, P.K. Giri, Strain induced phase formation, microstructural evolution and bandgap narrowing in strained TiO2 nanocrystals grown by ball milling. J. Alloy. Compd. 676, 591–600 (2016). https://doi.org/10.1016/j.jallcom.2016.03.154

    Article  Google Scholar 

  31. X. Yan, Z. Wang, M. He, Z. Hou, T. Xia, G. Liu, X. Chen, Tio2 nanomaterials as anode materials for lithium-ion rechargeable batteries. Energ. Technol. 3(8), 801–814 (2015)

    Article  Google Scholar 

  32. M.-S. Balogun, Y. Zhu, W. Qiu, Y. Luo, Y. Huang, C. Liang, X. Lu, Y. Tong, Chemically lithiated tio2 heterostructured nanosheet anode with excellent rate capability and long cycle life for high-performance lithium-ion batteries. ACS Appl. Mater. interfaces. 7(46), 25991–26003 (2015)

    Article  Google Scholar 

  33. M.H.N. Assadi, D.A. Hanaor, Theoretical study on copper’s energetics and magnetism in tio2 polymorphs. J. Appl. Phys. 113(23), 233913 (2013)

    Article  ADS  Google Scholar 

  34. T.-W. Fan, J.-L. Ke, L. Fu, B.-Y. Tang, L.-M. Peng, W.-J. Ding, Ideal strength of mg2x (x= si, ge, sn and pb) from first-principles. J. Magnes. Alloys. 1(2), 163–168 (2013)

    Article  Google Scholar 

  35. G. Wang, R. Pandey, S.P. Karna, Atomically thin group v elemental films: theoretical investigations of antimonene allotropes. ACS Appl. Mater. Interfaces. 7(21), 11490–11496 (2015)

    Article  Google Scholar 

  36. A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H.S. van der Zant, G.A. Steele, Local strain engineering in atomically thin mos2. Nano Lett. 13(11), 5361–5366 (2013)

    Article  ADS  Google Scholar 

  37. F. Liu, P. Ming, J. Li, Ab initiocalculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 76(6), 064120 (2007). https://doi.org/10.1103/physrevb.76.064120

    Article  ADS  Google Scholar 

  38. R.-H. Zhang, L.-P. Wang, Z.-B. Lu, Probing the intrinsic failure mechanism of fluorinated amorphous carbon film based on the first-principles calculations. Sci. Rep. 5(1), 1–9 (2015). https://doi.org/10.1038/srep09419

    Article  Google Scholar 

  39. B. Mortazavi, O. Rahaman, M. Makaremi, A. Dianat, G. Cuniberti, T. Rabczuk, First-principles investigation of mechanical properties of silicene, germanene and stanene. Physica. E 87, 228–232 (2017). https://doi.org/10.1016/j.physe.2016.10.047

    Article  ADS  Google Scholar 

  40. Q. Peng, W. Ji, S. De, Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study. Comput. Mater. Sci. 56, 11–17 (2012). https://doi.org/10.1016/j.commatsci.2011.12.029

    Article  Google Scholar 

  41. Z. Sohbatzadeh, H.A. Eivari, D.V. Fakhrabad, Formation energy and some mechanical properties of hydrogenated hexagonal monolayer of GeC. Physica. B 547, 88–91 (2018). https://doi.org/10.1016/j.physb.2018.08.009

    Article  ADS  Google Scholar 

  42. R. Ansari, M. Mirnezhad, H. Rouhi, A first principles study on the mechanical properties of hexagonal zinc oxide sheets. Superlattices. Microstruct. 79, 15–20 (2015). https://doi.org/10.1016/j.spmi.2014.12.014

    Article  Google Scholar 

  43. Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qin, J. Li, Mechanical and electronic properties of monolayer MoS2 under elastic strain. Phys. Lett. A 376(12–13), 1166–1170 (2012). https://doi.org/10.1016/j.physleta.2012.02.029

    Article  ADS  Google Scholar 

  44. Z. Zhang, Y. Yang, E.S. Penev, B.I. Yakobson, Elasticity, flexibility, and ideal strength of borophenes. Adv. Func. Mater. 27(9), 1605059 (2017). https://doi.org/10.1002/adfm.201605059

    Article  Google Scholar 

  45. Q. Wei, X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104(25), 251915 (2014). https://doi.org/10.1063/1.4885215

    Article  ADS  Google Scholar 

  46. H. Wang, X. Li, P. Li, J. Yang, updelta-phosphorene: a two dimensional material with a highly negative poissons ratio. Nanoscale 9(2), 850–855 (2017). https://doi.org/10.1039/c6nr08550d

    Article  Google Scholar 

  47. X. Liu, H. Zhou, B. Yang, Y. Qu, M. Zhao, Strain-modulated electronic structure and infrared light adsorption in palladium diselenide monolayer. Sci. Rep. 7(1), 1–6 (2017). https://doi.org/10.1038/srep39995

    Article  ADS  Google Scholar 

  48. Z. Guo, J. Zhou, C. Si, Z. Sun, Flexible two-dimensional tin-1cn(n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys. Chem. Chem. Phys. 17(23), 15348–15354 (2015). https://doi.org/10.1039/c5cp00775e

    Article  Google Scholar 

  49. B. Mortazavi, M. Shahrokhi, M. Makaremi, T. Rabczuk, Anisotropic mechanical and optical response and negative poisson’s ratio in mo2c nanomembranes revealed by first-principles simulations. Nanotechnology 28(11), 115705 (2017). https://doi.org/10.1088/1361-6528/aa5c29

    Article  ADS  Google Scholar 

  50. M. Topsakal, S. Ciraci, Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study. Phys. Rev. B 81(2), 024107 (2010)

    Article  ADS  Google Scholar 

  51. S.I. Lukyanov, A.V. Bandura, R.A. Evarestov, Youngs modulus and poissons ratio for tio2-based nanotubes and nanowires: modelling of temperature dependence. RSC Adv. 6(19), 16037–16045 (2016). https://doi.org/10.1039/c5ra24951a

    Article  ADS  Google Scholar 

  52. Y. Ding, B. Xiao, Anisotropic elasticity, sound velocity and thermal conductivity of TiO2 polymorphs from first principles calculations. Comput. Mater. Sci. 82, 202–218 (2014). https://doi.org/10.1016/j.commatsci.2013.09.061

    Article  Google Scholar 

  53. D.G. Isaak, J.D. Carnes, O.L. Anderson, H. Cynn, E. Hake, Elasticity of TiO 2 rutile to 1800 k. Phys. Chem. Miner. 26(1), 31–43 (1998). https://doi.org/10.1007/s002690050158

    Article  ADS  Google Scholar 

  54. S. Nevhal, S. Kundalwal, Polarization in graphene nanoribbons with inherent defects using first-principles calculations. Acta Mech. 233(1), 399–411 (2022)

    Article  MATH  Google Scholar 

  55. O. Rahaman, B. Mortazavi, A. Dianat, G. Cuniberti, T. Rabczuk, A structural insight into mechanical strength of graphene-like carbon and carbon nitride networks. Nanotechnology 28(5), 055707 (2016). https://doi.org/10.1088/1361-6528/28/5/055707

    Article  ADS  Google Scholar 

  56. J.F. Nye. Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press, ??? (1985). https://www.amazon.com/Physical-Properties-Crystals-Representation-Matrices/dp/0198511655?SubscriptionId=AKIAIOBINVZYXZQZ2U3A &tag=chimbori05-20 &linkCode=xm2 &camp=2025 &creative=165953 &creativeASIN=0198511655

  57. P. Vannucci. Anisotropic Elasticity. Springer, ??? (2018). https://doi.org/10.1007/978-981-10-5439-6

  58. V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180(11), 2175–2196 (2009). https://doi.org/10.1016/j.cpc.2009.06.022

    Article  ADS  MATH  Google Scholar 

  59. V. Havu, V. Blum, P. Havu, M. Scheffler, Efficient o (n) integration for all-electron electronic structure calculation using numeric basis functions. J. Comput. Phys. 228(22), 8367–8379 (2009)

    Article  ADS  MATH  Google Scholar 

  60. X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo, K. Reuter, M. Scheffler, Resolution-of-identity approach to hartree-fock, hybrid density functionals, rpa, mp2 and gw with numeric atom-centered orbital basis functions. New J. Phys. 14(5), 053020 (2012)

    Article  ADS  Google Scholar 

  61. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996). https://doi.org/10.1103/physrevlett.77.3865

    Article  ADS  Google Scholar 

  62. M. Iuga, G. Steinle-Neumann, J. Meinhardt, Ab-initio simulation of elastic constants for some ceramic materials. Eur. Phys. J. B 58(2), 127–133 (2007). https://doi.org/10.1140/epjb/e2007-00209-1

    Article  ADS  Google Scholar 

  63. M.H. Manghnani, Elastic constants of single-crystal rutile under pressures to 7.5 kilobars. Journal of Geophysical Research 74(17), 4317–28 (1969)

    Article  ADS  Google Scholar 

  64. R.M. Hazen, L.W. Finger, Bulk moduli and high-pressure crystal structures of rutile-type compounds. J. Phys. Chem. Solids 42(3), 143–151 (1981)

    Article  ADS  Google Scholar 

  65. C. Lee, X. Wei, J.W. Kysar, J. Hone.(2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. science 321(5887):385-8. https://doi.org/10.1126/science.1157996

  66. A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S. Van Der Zant, N. Agraït, G. Rubio-Bollinger, Elastic properties of freely suspended mos2 nanosheets. Adv. Mater. 24(6), 772–775 (2012). https://doi.org/10.1002/adma.201103965

    Article  Google Scholar 

  67. L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson et al., Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10(8), 3209–3215 (2010). https://doi.org/10.1021/nl1022139

    Article  ADS  Google Scholar 

  68. J.-W. Jiang, H.S. Park, Negative poisson’s ratio in single-layer black phosphorus. Nat. Commun. 5(1), 1–7 (2014)

    Article  Google Scholar 

  69. M. Elahi, K. Khaliji, S.M. Tabatabaei, M. Pourfath, R. Asgari, Modulation of electronic and mechanical properties of phosphorene through strain. Phys. Rev. B 91(11), 115412 (2015)

    Article  ADS  Google Scholar 

  70. S. Kundalwal, S. Meguid, G. Weng, Strain gradient polarization in graphene. Carbon 117, 462–472 (2017)

    Article  Google Scholar 

Download references

Funding

This work was funded by University of Zabol, Project code PR-UOZ1400-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Asnaashari Eivari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eivari, H.A., Hafizi, R. Mechanical properties of two-dimensional sheets of TiO\(_2\): a DFT study. Eur. Phys. J. Plus 137, 1128 (2022). https://doi.org/10.1140/epjp/s13360-022-03316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03316-z

Navigation