Skip to main content
Log in

Systematics of the spontaneous and simultaneous emission of 2\(\alpha\)-particles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The tunneling of two \(\alpha\)-particles through the interaction potential barrier is investigated to calculate the logarithmic values of half-lives \(T_{1/2}^{2 \alpha }\)’s for even-even nuclei lying in medium and heavy mass region and the obtained results are compared with those reported in the literature. A simple linear relation connecting half-lives and disintegration energies is proposed. We have also analysed the reduced decay widths in terms of pairing correlations. Furthermore, employing the periodic-orbit and BCS theories within microscopic-macroscopic formalism, we have calculated the disintegration energies \(Q_{2 \alpha }\)-values in order to find the possibility of the existence of double \(\alpha\)-radioactivity in unknown superheavy nuclei. Subsequently, the logarithmic values of \(T_{1/2}^{2 \alpha }\)’s are calculated. Moreover, the study of branching ratios leads us to investigate the competition of double \(\alpha\)-decay with \(\alpha\)-decay and SF. Our calculations predict that there is possibility of double \(\alpha\)-radioactivity in \(^{314,316}126\) nuclei owing to the magicity at N=184. We believe that this work can play a significant role in the experimental search for double \(\alpha\)-radioactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

All data generated or analysed during this study are included in this published article.

References

  1. Y.J. Yao, G.L. Zhang, W.W. Qu, J.Q. Qian, Eur. Phys. J. A 51, 122 (2015). https://doi.org/10.1140/epja/i2015-15122-0

    Article  ADS  Google Scholar 

  2. O.N. Ghodsi, A. Daei-Ataollah, Phys. Rev. C 93, 024612 (2016). https://doi.org/10.1103/PhysRevC.93.024612

    Article  ADS  Google Scholar 

  3. O. Ghodsi, M. Hassanzad, Nucl. Phys. A 987, 369 (2019). https://doi.org/10.1016/j.nuclphysa.2019.05.001

    Article  ADS  Google Scholar 

  4. O.N. Ghodsi, M. Hassanzad, Phys. Rev. C 101, 034606 (2020). https://doi.org/10.1103/PhysRevC.101.034606

    Article  ADS  Google Scholar 

  5. O. Nagib, Phys. Rev. C 101, 014610 (2020)

    Article  ADS  Google Scholar 

  6. J. Błocki, J. Randrup, W.J. Świaţecki, C.F. Tsang, Ann. Phys. 105, 427 (1977). https://doi.org/10.1016/0003-4916(77)90249-4

    Article  ADS  Google Scholar 

  7. D. Pathak, N. Singh, H. Kaur, S.R. Jain, J. Phys. G Nucl. Part. Phys. 48, 075103 (2021). https://doi.org/10.1088/1361-6471/abe281

    Article  ADS  Google Scholar 

  8. D. Pathak, N. Singh, P. Singh, P. Kaur, H. Kaur, S.R. Jain, Phys. Scr. 97, 045303 (2022). https://doi.org/10.1088/1402-4896/ac5a8c

    Article  ADS  Google Scholar 

  9. D. Pathak, P. Singh, H. Parshad, H. Kaur, S.R. Jain, Eur. Phys. J. Plus 137, 1 (2022). https://doi.org/10.1140/epjp/s13360-022-02354-x

    Article  Google Scholar 

  10. D. Pathak, P. Singh, H. Parshad, H. Kaur, Int. J. Modern Phys. E 31, 2250021 (2022). https://doi.org/10.1142/S0218301322500215

    Article  ADS  Google Scholar 

  11. S. Monga, N.R. Dwivedi, D. Pathak, H. Kaur, S.R. Jain, J. Phys. G Nucl. Part. Phys. 46, 115110 (2019). https://doi.org/10.1088/1361-6471/ab4485

    Article  ADS  Google Scholar 

  12. M. Brack, R.K. Bhaduri, Semiclassical Physics, Frontiers in Physics (Westview Press, Boulder, 2003)

    MATH  Google Scholar 

  13. C. Amann, M. Brack, J. Phys. A Math. Gen. 35, 6009 (2002). https://doi.org/10.1088/0305-4470/35/29/306

    Article  ADS  Google Scholar 

  14. A.G. Magner, A.M. Gzhebinsky, S. Fedotkin, Phys. Atom. Nucl. 70, 1859 (2007)

    Article  ADS  Google Scholar 

  15. V.M. Strutinsky, Nukleonika 20, 679 (1975)

    Google Scholar 

  16. K.-I. Arita, A. Sugita, K. Matsuyanagi, Progress Theor. Phys. 100, 1223 (1998). https://doi.org/10.1143/PTP.100.1223

    Article  ADS  Google Scholar 

  17. M.C. Gutzwiller, J. Math. Phys. 12, 343 (1971). https://doi.org/10.1063/1.1665596

    Article  ADS  Google Scholar 

  18. M. Brack, S.R. Jain, Phys. Rev. A 51, 3462 (1995). https://doi.org/10.1103/PhysRevA.51.3462

    Article  ADS  Google Scholar 

  19. H. Kaur, S.R. Jain, J. Phys. G Nucl. Part. Phys. 42, 115103 (2015)

    Article  ADS  Google Scholar 

  20. S. Monga, H. Kaur, S.R. Jain, Int. J. Modern Phys. E 29, 2050071 (2020)

    Article  ADS  Google Scholar 

  21. Y. N. Novikov, Some features of nuclei close to the boundaries of nucleon stability (publisher Int. Workshop on U-400 Program. JINR) (1979)

  22. E. Berlovich, Y. Novikov, One- and many-nucleon radioactivity of atomic nuclei, in Modern Methods of Nuclear Spectroscopy. ed. by B.S. Dzhelepov (Nauka, Leningrad, 1986)

    Google Scholar 

  23. D. Poenaru, M. Ivaşcu, J. de Phys. Lett. 46, 591 (1985). https://doi.org/10.1051/jphyslet:019850046013059100

    Article  Google Scholar 

  24. V.I. Tretyak, Nucl. Phys. Atomic Energy 22, 121 (2021). https://doi.org/10.15407/jnpae2021.02.121

    Article  ADS  Google Scholar 

  25. F. Mercier, J. Zhao, J.-P. Ebran, E. Khan, T. Nikšić, D. Vretenar, Phys. Rev. Lett. 127, 012501 (2021). https://doi.org/10.1103/PhysRevLett.127.012501

    Article  ADS  Google Scholar 

  26. D. Brink, N. Takigawa, Nucl. Phys. A 279, 159 (1977). https://doi.org/10.1016/0375-9474(77)90427-4

    Article  ADS  Google Scholar 

  27. P. Möller, A. Sierk, T. Ichikawa, H. Sagawa, Atomic Data Nucl Data Tables 109–110, 1 (2016). https://doi.org/10.1016/j.adt.2015.10.002

    Article  ADS  Google Scholar 

  28. G. Royer, Nucl. Phys. A 848, 279 (2010). https://doi.org/10.1016/j.nuclphysa.2010.09.009

    Article  ADS  Google Scholar 

  29. D.N. Poenaru, M. Ivaşcu, A. Sndulescu, W. Greiner, Phys. Rev. C 32, 572 (1985). https://doi.org/10.1103/PhysRevC.32.572

    Article  ADS  Google Scholar 

  30. Y. Qian, Z. Ren, D. Ni, Phys. Rev. C 83, 044317 (2011)

    Article  ADS  Google Scholar 

  31. L.D. Landau, E. Lifshitz, Quantum Mechanics, Non-Relativistic Theory (Pergamon Press, Oxford, 1977)

    MATH  Google Scholar 

  32. K.P. Santhosh, C. Nithya, Phys. Rev. C 97, 064616 (2018). https://doi.org/10.1103/PhysRevC.97.064616

    Article  ADS  Google Scholar 

  33. https://www.nndc.bnl.gov/nudat2/

  34. E.L. Medeiros, M.M.N. Rodrigues, S.B. Duarte, O.A.P. Tavares, J. Phys. G Nucl. Part. Phys. 32, B23 (2006). https://doi.org/10.1088/0954-3899/32/8/b01

    Article  Google Scholar 

  35. K.-N. Huang, M. Aoyagi, M.H. Chen, B. Crasemann, H. Mark, Atomic Data Nucl. Data Tables 18, 243 (1976). https://doi.org/10.1016/0092-640X(76)90027-9

    Article  ADS  Google Scholar 

  36. K.P. Santhosh, R.K. Biju, S. Sahadevan, J. Phys. G Nucl. Part. Phys. 36, 115101 (2009). https://doi.org/10.1088/0954-3899/36/11/115101

    Article  ADS  Google Scholar 

  37. K.P. Santhosh, T.A. Jose, Phys. Rev. C 104, 064604 (2021). https://doi.org/10.1103/PhysRevC.104.064604

    Article  ADS  Google Scholar 

  38. K.P. Santhosh, C. Nithya, Phys. Rev. C 97, 064616 (2018). https://doi.org/10.1103/PhysRevC.97.064616

    Article  ADS  Google Scholar 

  39. G. Royer, B. Remaud, J. Phys. G Nucl. Phys. 10, 1057 (1984). https://doi.org/10.1088/0305-4616/10/8/011

    Article  ADS  Google Scholar 

  40. G. Royer, B. Remaud, Nucl. Phys. A 444, 477 (1985). https://doi.org/10.1016/0375-9474(85)90464-6

    Article  ADS  Google Scholar 

  41. D.S. Delion, S.A. Ghinescu, Phys. Rev. C 105, L031301 (2022). https://doi.org/10.1103/PhysRevC.105.L031301

    Article  ADS  Google Scholar 

  42. P. Möller, M. Mumpower, T. Kawano, W. Myers, Atomic Data Nucl. Data Tables 125, 1 (2019). https://doi.org/10.1016/j.adt.2018.03.003

    Article  ADS  Google Scholar 

  43. G. Royer, A. Subercaze, Nucl. Phys. A 917, 1 (2013). https://doi.org/10.1016/j.nuclphysa.2013.09.003

    Article  ADS  Google Scholar 

  44. I. Ragnarsson, S. Nilsson, Shapes and Shells in Nuclear Structure (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  45. R. Roy, B. Nigam, Nuclear Physics: Theory and Experiment (Wiley, Hoboken, 1967)

    Google Scholar 

  46. G. Royer, M. Jaffré, D. Moreau, Phys. Rev. C 86, 044326 (2012). https://doi.org/10.1103/PhysRevC.86.044326

    Article  ADS  Google Scholar 

  47. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957). https://doi.org/10.1103/PhysRev.108.1175

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Jensen, J. Damgaard, Nucl. Phys. A 203, 578 (1973). https://doi.org/10.1016/0375-9474(73)90365-5

    Article  ADS  Google Scholar 

  49. H. Kaur, P. Singh, S.S. Malik, J. Phys. G Nucl. Part. Phys. 42, 25105 (2015)

    Article  Google Scholar 

  50. H. Kaur, P. Singh, Eur. Phys. J. A 20, 385 (2004)

    Article  ADS  Google Scholar 

  51. C. Xu, Z. Ren, Y. Guo, Phys. Rev. C 78, 044329 (2008). https://doi.org/10.1103/PhysRevC.78.044329

    Article  ADS  Google Scholar 

Download references

Funding

No funding available for this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harjeet Kaur.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, D., Singh, P., Parshad, H. et al. Systematics of the spontaneous and simultaneous emission of 2\(\alpha\)-particles. Eur. Phys. J. Plus 137, 1115 (2022). https://doi.org/10.1140/epjp/s13360-022-03309-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03309-y

Navigation