Skip to main content
Log in

Dust acoustic kinetic Alfvén wave solitons and periodic waves in a polarized dusty plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This investigation presents the influence of polarization force on dust acoustic kinetic Alfvén solitary waves (DAKASWs) and phase portrait analysis in a magnetized dusty plasma composed of dust and ions as well as electrons obeying Vasyliunas–Cairns distribution. Two KdV equations with polarization force in the fluid model equations have been derived by employing extended Poincaré–Lighthill–Kuo method. Multi-soliton solution are also determined by using Hirota Bilinear method. Only negative potential (rarefactive) DAKASWs are observed. Analysis of variation in the polarization force, propagation angle, and plasma beta on the characteristics of DAKASWs and head-on collision of multi-solitons has been carried out. Galilean transformation is used to transform the KdV equation into planar dynamical systems. The dynamical system has been described in the form of phase portrait and small-amplitude Sagdeev’s pseudopotential curve. Further, under the influence of different plasma parameters, periodic waves in homoclinic and periodic orbits in phase portraits are investigated. The findings of this investigation may be useful to understand the insight of physics of nonlinear phenomena for studying dynamics of DAKASWs in Jupiter’s magnetosphere as well as astrophysical plasma environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

The original contributions presented in the study are included in the article; further enquiries can be directed to the corresponding authors.

References

  1. V. Formisano, G. Moreno, F. Palmiotto, Solar wind interaction with the Earth’s magnetic field: 1. Magnetosheath J. Geophys. Res. 78, 3714 (1973). https://doi.org/10.1029/JA078i019p03714

    Article  ADS  Google Scholar 

  2. M.P. Leubner, On Jupiter’s whistler emission. J. Geophys. Res. 87, 6335 (1982). https://doi.org/10.1029/JA087iA08p06335

    Article  ADS  Google Scholar 

  3. T.P. Armstrong, M.T. Paonessa, E.V. Bell II., S.M. Krimigis, Voyager observations of Saturnian ion and electron phase space densities. J. Geophys. Res. 88, 8893 (1983). https://doi.org/10.1029/JA088iA11p08893

    Article  ADS  Google Scholar 

  4. V.M. Vasyliunas, A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J. Geophys. Res. 73, 2839 (1968). https://doi.org/10.1029/JA073i009p02839

    Article  ADS  Google Scholar 

  5. R.A. Cairns, A.A. Mamun, R. Bingham, R. Bostrom, R.O. Dendy, C.M.C. Nairn, P.K. Shukla, Electrostatic solitary structures in non-thermal plasmas. Geophys. Res. Lett. 22, 2709 (1995). https://doi.org/10.1029/95GL02781

    Article  ADS  Google Scholar 

  6. N. Divine, H.B. Garret, Charged particle distributions in Jupiter’s magnetosphere. J. Geophys. Res. 88(9), 6889–6903 (1983). https://doi.org/10.1029/JA088iA09p06889

    Article  ADS  Google Scholar 

  7. T.K. Baluku, M.A. Hellberg, Dust acoustic solitons in plasmas with kappa-distributed electrons and/or ions. Phys. Plasmas 15, 123705 (2008)

    Article  ADS  Google Scholar 

  8. K. Singh, N. Kaur, N.S. Saini, Head-on collision between two dust acoustic solitary waves and study of rogue waves in multicomponent dusty plasma. Phys. Plasmas 24, 063703 (2017)

    Article  ADS  Google Scholar 

  9. M. Farooq, A. Mushtaq, Dust ion acoustic waves in four component magnetized dusty plasma with effect of slow rotation and superthermal electrons. Phys. Plasmas 24, 123707 (2017)

    Article  ADS  Google Scholar 

  10. W.F. El-Taibany, A. Mushtaq, W.M. Moslem, M. Wadati, Finite amplitude solitary excitations in rotating magnetized nonthermal complex (dusty) plasmas. Phys. Plasmas 17, 034501 (2010)

    Article  ADS  Google Scholar 

  11. K. Bentabet, M. Tribeche, Dust acosutic solitons in a polarized dusty plasma with nonthermal ions. IEEE Trans. Plasma Sci. 45, 736–741 (2017)

    Article  ADS  Google Scholar 

  12. K. Singh, P. Sethi, N.S. Saini, Effect of polarization force on head-on collision between multi-solitons in dusty plasma. Phys. Plasma 25, 033705 (2018)

    Article  ADS  Google Scholar 

  13. A. Patidar, P. Sharma, Dust acoustic shocks in viscous dusty plasma with polarization force. AIP Conf. Proc. 2100, 020168(1–4) (2019)

    Google Scholar 

  14. S. Hamaguchi, R.T. Farouki, Polarization force on a charged particulate in a nonuniform plasma. Phys. Rev. E 49(5), 4430 (1994)

    Article  ADS  Google Scholar 

  15. S.A. Khrapak, A.V. Ivlev, V.V. Yaroshenko, G.E. Morfill, Influence of a polarization force on dust acoustic waves. Phys. Rev. Lett. 102, 245004 (2009)

    Article  ADS  Google Scholar 

  16. K.S. Ashrafi, A.A. Mamun, P.K. Shukla, Time-dependent cylindrical and spherical dust-acoustic solitary and shock waves in a strongly coupled dusty plasma in the presence of polarization force. Europhys. Lett. 92(1), 15004 (2010)

    Article  ADS  Google Scholar 

  17. M. Asaduzzaman, A.A. Mamun, K.S. Ashrafi, Effects of nonthermal ions and polarization force on dust-acoustic waves in a density-varying dusty plasma. Phys. Plasmas 18, 113704 (2011)

    Article  ADS  Google Scholar 

  18. R.P. Prajapati, Effect of polarization force on the Jeans instability of self-gravitating dusty plasma. Phys. Lett. A 375, 2624 (2011)

    Article  ADS  Google Scholar 

  19. P. Bandyopadhyay, K. Jiang, R. Dey, G.E. Morfill, Interaction and propagation characteristics of two counter and co-propagating Mach cones in a dusty plasma. Phys. Plasmas 19, 123707 (2012)

    Article  ADS  Google Scholar 

  20. S. Pervin, S.S. Duha, M. Asaduzzaman, A.A. Mamun, Effects of polarization force and fast electrons on DA shock waves in a strongly coupled dusty plasma. J. Plasma Phys. 79, 1 (2013)

    Article  ADS  Google Scholar 

  21. S.K. El-Labany, W.F. El-Taibany, E.E. Behery, N.A. Zedan, Dust acoustic cnoidal waves in a polytropic complex plasma. Eur. Phys. J. Plus 130, 250 (2015)

    Article  Google Scholar 

  22. M. Singh, N. Kaur, N.S. Saini, Effect of polarization force on small amplitude dust kinetic Alfvén solitary and rogue waves in a nonextensive plasma. Phys. A 503(C), 1228–1240 (2018)

    Article  MathSciNet  Google Scholar 

  23. K. Singh, N.S. Saini, Head-on collision of multi-solitons in a magnetized space dusty plasma in the presence of nonextensive polarization force. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1893407

    Article  Google Scholar 

  24. C.S. Gardner, J.M. Greener, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19, 1095 (1967)

    Article  ADS  Google Scholar 

  25. C.H. Su, R.M. Miura, On head-on collisions between two solitary waves. J. Fluid Mech. 98, 509 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  26. N.J. Zabusky, M.D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240 (1965)

    Article  ADS  Google Scholar 

  27. J. Kue-Xue, Head-on collision of dust-acoustic solitary waves. Phys. Rev. E 69, 016403 (2004)

    Article  ADS  Google Scholar 

  28. S.K. El-Labany, W.F. El-Taibany, E.F. El-Shamy, A. El-Depsy, N.A. Zedan, Head-on-collision of modulated dust acoustic waves in strongly coupled dusty plasma. Phys. Plasmas 19, 103708 (2012)

    Article  ADS  Google Scholar 

  29. N.S. Saini, K. Singh, Head-on collision of two dust ion acoustic solitary waves in a weakly relativistic multicomponent superthermal plasma. Phys. Plasmas 23, 103701 (2016)

    Article  ADS  Google Scholar 

  30. K. Singh, P. Sethi, N.S. Saini, Effect of polarization force on head-on collision between multi-solitons in dusty plasma. Phys. plasmas 25, 033705 (2018)

    Article  ADS  Google Scholar 

  31. P. Sethi, K. Singh, and N. S. Saini, Effect of Superthermal Polarization Force on Dust Acoustic Nonlinear Structures, Zeitschrift für Naturforschung A, 73, 9( 795-803). https://doi.org/10.1515/zna-2018-0079 (2018)

  32. M. Singh, R. Kohli, N. Kaur, N.S. Saini, Effect of polarization force on large amplitude dust kinetic Alfvén waves. AIP Conf. Proc. 1925, 020012 (2018)

    Article  Google Scholar 

  33. M. Singh, N. Kaur, N.S. Saini, Arbitrary amplitude dust kinetic Alfvén solitary waves in the presence of polarization force. Phys. Plasmas 25, 023705 (2018)

    Article  ADS  Google Scholar 

  34. S. Parveen, S. Mahmood, A. Qamar, M. Adnan, Interaction of kinetic Alfvén wave solitons in nonthermal plasmas. Phys. Plasmas 26, 072117 (2019)

    Article  ADS  Google Scholar 

  35. S. Singla, N.S. Saini, Head-on collision of ion-acoustic multi-solitons and study of rogue waves in electron-beam superthermal plasma. Results Phys. 22, 103898 (2021)

    Article  Google Scholar 

  36. U.K. Samanta, A. Saha, P. Chatterjee, Bifurcations of dust ion acoustic travelling waves in a magnetized quantum dusty plasma Astrophys. Space Sci. 347, 293 (2013)

    Article  ADS  Google Scholar 

  37. A.E. Dubinov, M.A. Sazonkin, Supernonlinear ion-acoustic waves in a dusty plasma. Phys. Wave Phenomena 21(2), 118–128 (2013)

    Article  ADS  Google Scholar 

  38. S.K. El-Labany, W.F. El-Taibany, A. Atteya, Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons. Phys. Lett. A 382, 412 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  39. A. Saha, B. Pradhan, S. Banerjee, Bifurcation analysis of quantum ion-acoustic kink, anti-kink and periodic waves of the Burgers equation in a dense quantum plasma. Eur. Phys. J. Plus 135, 216 (2020)

    Article  Google Scholar 

  40. R.M. Taha, W.F. El-Taibany, Bifurcation analysis of nonlinear and supernonlinear dust-acoustic waves in a dusty plasma using the generalized (r, q) distribution function for ions and electrons. Contrib. Plasma Phys. 60, e202000022 (2020)

    Article  Google Scholar 

  41. A. Abdikian, J. Tamang, A. Saha, Investigation of supernonlinear and nonlinear ion-acoustic waves in a magnetized electron-ion plasma with generalized (r, q) distributed electrons. Waves Rand. Comp. Med. (2021). https://doi.org/10.1080/17455030.2021.1965242

    Article  Google Scholar 

  42. B. Pradhan, A. Abdikian, A. Saha, Nonlinear and supernonlinear ion-acoustic wave phenomena in an electron-positron-pair-ion quantum plasma. Waves Rand. Comp. Med. (2022). https://doi.org/10.1080/17455030.2022.2070796

    Article  Google Scholar 

  43. M. Farooq, M. Ahmad, Q. Jan, Polarization force in an opposite polarity dusty plasma with hybrid Cairns-Tsallis distributed electrons. Contrib. Plasma Phys. 61, e202000170 (2021)

    Article  Google Scholar 

  44. N.S. Saini, M. Singh, A.S. Bains, Dust kinetic Alfvén solitary and rogue waves in a superthermal dusty plasma. Phys. Plasmas 22, 113702 (2015)

    Article  ADS  Google Scholar 

  45. A. Saha, P. Chatterjee, S. Banerjee, An open problem on superlinear waves in a two-component Maxwellian plasma. Eur. Phys. J. Plus 135, 801 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the support for this research work from Department of Science and Technology, Govt. of India, New Delhi, under DST-SERB project No. CRG/2019/003988.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Saini.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Appendix A

Appendix A

$$\begin{aligned}&a_1 T_1 \psi _1 +X_1 v_{dx1}+ Z_1 v_{dz1} =0 \end{aligned}$$
(42)
$$\begin{aligned}&v_{dx1}=\beta _d X_1 T_1 \phi _1 \end{aligned}$$
(43)
$$\begin{aligned}&T_1 v_{dz1}= (1-\mathbb {R}H_1) \beta _d Z_1 \psi _1 \end{aligned}$$
(44)
$$\begin{aligned}&{X_1}^2 {Z_1}^2 \phi _1=-\frac{1}{\beta _d}\left( {T_1}^2 a_1 \psi _1+ T_1 Z_1 v_{dz1}\right) \end{aligned}$$
(45)

Operating \(T_1\) on Eq. (42) and using Eqs. (43) and (44), we get,

$$\begin{aligned} a_1 {T_1}^2 \psi _1 + T_1 Z_1 v_{dz1}=0 \end{aligned}$$
(46)
$$\begin{aligned}&{X_1}^2 {T_1}^2 \phi _1=-\frac{1}{\beta _d}\left( a_1 {T_1}^2 \psi _1+ (1-\mathbb {R}H_1)\beta _d {Z_1}^2\psi _1 \right) \end{aligned}$$
(47)

Putting in Eq. (45), we get

$$\begin{aligned} {X_1}^2 {Z_1}^2 \phi _1= -\frac{1}{\beta _d}\left( {T_1}^2 a_1 \psi _1+(1- \mathbb {R}H_1)\beta _d {Z_1}^2 \psi _1 \right) \end{aligned}$$
(48)

Multiplying Eq. (47) with \({Z_1}^2\) and Eq. (47) with \({T_1}^2\) and adding we get,

$$\begin{aligned} \left( a_1 {Z_1}^2 {T_1}^2 +\beta _d {Z_1}^4\right) \psi _1= \left( a_1 {T_1}^4 + (1- \mathbb {R}H_1)\beta _d {T_1}^2 {Z_1}^2 \right) \psi _1 \end{aligned}$$
(49)

substituting Eq. (26) in Eq. (44), we obtain

$$\begin{aligned} v_{\mathrm{d}z1}= -(1-\mathbb {R}H_1) \beta _d \left( \psi _{1\xi }-\psi _{1\eta } \right) . \end{aligned}$$
(50)

By using Eqs. (42) and (50), the value of \(v_{\mathrm{d}x1}\) can be given as

$$\begin{aligned} v_{\mathrm{d}x1}= \frac{1}{l_x}\left( \lambda a_1+\frac{\beta _d (1-\mathbb {R}H_1) {l_z}^2}{\lambda }\right) (\psi _{1\xi }-\psi _{1\eta }) \end{aligned}$$
(51)

also, substituting Eq. (26) in the lowest order of Eq. (13),

$$\begin{aligned} n_{d1}= a_1 (\psi _{1\xi }+\psi _{1\eta }) \end{aligned}$$
(52)

Lastly, substituting Eq. (26) in Eq. (48) we get,

$$\begin{aligned} \left( \partial _{ \xi }+\partial _{\eta }\right) ^2 \phi _1= - \frac{1}{\beta _d {l_x}^2} \left( a_1 +(1-\mathbb {R}H_1)\beta _d\right) (\psi _{1\xi }+\psi _{1\eta }) \end{aligned}$$
(53)

Higher-order equations are obtained as follows:

$$\begin{aligned}&T_1 (a_1 \psi _2 + a_2 {\psi _1}^2) + a_1 \frac{\partial \psi _1}{\partial \tau }+ T_2 a_1 \psi _1 + X_1 a_1 \psi _1 v_{\mathrm{d}x1} + X_1 v_{\mathrm{d}x2} \nonumber \\&\quad + Z_1 v_{\mathrm{d}z2} + X_1 a_1 v_{\mathrm{d}z1} \psi _1 + X_2 v_{\mathrm{d}x1}+ Z_2 v_{\mathrm{d}z1} =0 \end{aligned}$$
(54)
$$\begin{aligned}&v_{\mathrm{d}x2}= \beta _d (X_1 T_1 \phi _2+X_1 T_2 \phi _1 +X_2 T_1 \phi _1 +X_1 \frac{\partial \phi _1}{\partial \tau })=0 \end{aligned}$$
(55)
$$\begin{aligned}& T_1 v_{\mathrm{d}z2}+v_{\mathrm{d}x1}X_1 v_{\mathrm{d}z1}+v_{\mathrm{d}z1}Z_1 v_{\mathrm{d}z1} +\frac{\partial v_{\mathrm{d}z1}}{\partial \tau }+T_2 v_{\mathrm{d}z1}= \beta _d (1-\mathbb {R}H_1) Z_1 \psi _2\\&\quad + \beta _d Z_2 \psi + \beta _d \mathbb {R}(2 H_2 \psi _1-\frac{{H_1}^2 \psi }{2})Z_1 \psi _1 \end{aligned}$$
(56)
$$ \begin{aligned} (X_{1} )^{2} (Z_{1} )^{2} (\phi _{2} - \psi _{1} ) & = - \frac{1}{{\beta _{d} }}\left[ {T_{1} ^{2} (a_{1} \psi _{2} + a_{2} \psi _{1} ^{2} ) + Z_{1} T_{2} v_{{{\text{d}}z1}} + \frac{{\partial v_{{{\text{d}}z1}} }}{{\partial \tau }} + Z_{2} T_{1} v_{{{\text{d}}z1}} } \right. \\ & \quad \left. { + 2\lambda \frac{{\partial \psi _{1} a_{1} }}{{\partial \tau }} + 2T_{1} T_{2} \psi _{1} a_{1} + Z_{1} T_{1} v_{{{\text{d}}z2}} + T_{1} Z_{1} a_{1} \psi _{1} v_{{{\text{d}}z1}} } \right] \\ \end{aligned} $$
(57)

The unknown coefficients appearing in Eqs. (31)–(36) are illustrated as follows:

In Eqs. (31) and (32),

$$\begin{aligned}&A_1=1+ \exp {(k_1 Q^{-1/3}\xi -{k_1}^3 \tau )},\\&A_2=1+ \exp {(k_1 Q^{-1/3}\xi -{k_1}^3 \tau )}. \end{aligned}$$

In Eqs. (33) and (34),

$$\begin{aligned}&A_3=1+\exp {{\Omega _1}+\exp {\Omega _2}+U_{12}\exp {(\Omega _1+\Omega _2)}},\\&A_4=1+\exp {\varsigma _1} + \exp {\varsigma _2} + U_{12}\exp {(\varsigma _1+\varsigma _2)}. \end{aligned}$$

where \(\Omega _i= k_i Q^{-1/3}\xi -{k_i}^3 \tau \), \(\varsigma _i= k_i Q^{-1/3}\eta -{k_i}^3 \tau \) with \(i=1\) and 2 and \(U_{12}=(k_2-k_1)^2/(k_1+k_2)^2\).

In Eqs. (35) and (36),

$$\begin{aligned} A_5\,=\, & {} 1+ \exp {\Omega _1}+\exp {\Omega _2}+ \exp {\Omega _3} + U_{12}\exp {(\Omega _1+\Omega _2)}+U_{23}\exp {(\Omega _2+\Omega _3)} \\&+ U_{13}\exp {(\Omega _1+\Omega _3)}+U_{123}\exp {(\Omega _1+\Omega _2+\Omega _3),}\\ A_6\,=\, & {} 1+\exp {\varsigma _1}+\exp {\varsigma _2}+ \exp {\varsigma _3} + U_{12}\exp {(\varsigma _1+\varsigma _2)}+ U_{23}\exp {(\varsigma _2+\varsigma _3)} \\&+ U_{13}\exp {(\varsigma _1+\varsigma _3)}+ U_{123}\exp {(\varsigma _1+\varsigma _2+\varsigma _3)}. \end{aligned}$$

where \(\Omega _i= k_i Q^{-1/3}\xi -{k_i}^3 \tau \), \(\varsigma _i= k_i Q^{-1/3}\eta -{k_i}^3 \tau \) with \(i=1\), 2, 3 and \(U_{12}=(k_2-k_1)^2/(k_1+k_2)^2,\) \(U_{23}=(k_2-k_3)^2/(k_2+k_3)^2,\) \(U_{13}=(k_1-k_3)^2/(k_1+k_3)^2 \)and \(U_{123}=U_{12}U_{23}U_{13}\).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singla, S., Saini, N.S. Dust acoustic kinetic Alfvén wave solitons and periodic waves in a polarized dusty plasma. Eur. Phys. J. Plus 137, 1111 (2022). https://doi.org/10.1140/epjp/s13360-022-03304-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03304-3

Navigation