Skip to main content
Log in

Microstructural, optical, and electrical properties of Eu, Tb co-doped ZnO micropods elaborated by chemical bath deposition on a p-Si substrate

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 03 November 2022

This article has been updated

Abstract

Eu, Tb co-doped ZnO was elaborated by chemical bath deposition on p-type (100) Si and annealed at different temperatures. Micropod morphology was observed using SEM. All samples exhibited a wurtzite structures. The EDX concentrations of Eu and Tb did not exceed 2.1% and 1.3%, respectively. The mixed valence states of Eu and Tb in the ZnO micropods were demonstrated using XPS analysis. Microstructural analysis of the co-doped sample showed variations as a function of the Eu and Tb concentration ratios. The modification of the Pl intensity and center of gravity of the visible band emission is due to the perturbation of native defects that interact with RE ions. The emission of Eu 5D0 → 7F2 (615 nm) and Tb 5D4 → 7F3 (620 nm) in the red-orange region of visible light was obtained at an excitation wavelength of 405 nm. The competition between the effect of annealing temperature and that of the two dopant concentrations is believed to be an effective strategy for changing the color emission of Eu, Tb co-doped ZnO. The CIE color emission of the co-doped sample annealed at 500 °C and XEu = 1.19%, XTb = 0.92% annealed at 700 °C lies in the white-light region reported in the literature for designing WLED. The Eu, Tb co-doped ZnO/p-Si heterojunction showed good rectifying I–V characteristics, and the electrical parameters were similar to those obtained for each dopant. A significant decrease in series resistance was allowed to the growth of a ZnO seed layer before the formation of ZnO micropods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Raw data that support the findings of this study are available from the corresponding author upon reasonable request.]

Change history

References

  1. T.K. Anh, D.X. Loc, N. Tu, P.T. Huy, L.M.A. Tu, L.Q. Minh, J. Photonics 2014, 1 (2014)

    Article  Google Scholar 

  2. K. Qi, B. Cheng, J. Yu, W. Ho, J. Alloys Compd. 727, 792 (2017)

    Article  Google Scholar 

  3. R. Yogamalar, A. Bose, Prog. Nanotechnol. 2, 1 (2013)

    Google Scholar 

  4. M. Carofiglio, S. Barui, V. Cauda, M. Laurenti, Appl. Sci. 10, 5194 (2020)

    Article  Google Scholar 

  5. Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, P.H. Fleming, Appl. Phys. Lett. 81, 3046 (2002)

    Article  ADS  Google Scholar 

  6. X. Liu, X. Wu, H. Cao, P.P.H. Chang, J. Appl. Phys. 95, 3141 (2004)

    Article  ADS  Google Scholar 

  7. W. Chebil, A. Fouzri, A. Fargi, B. Azeza, Z. Zaaboub, V. Sallet, Mater. Res. Bull. 70, 719 (2015)

    Article  Google Scholar 

  8. W. Chebil, A. Gokarna, A. Fouzri, N. Hamdaoui, K. Nomenyo, G. Lerondel, J. Alloys Compd. 771, 448 (2019)

    Article  Google Scholar 

  9. V. Kumar, O.M. Ntwaeaborwa, T. Soga, V. Dutta, H.C. Swart, ACS Photonics 4, 2613 (2017)

    Article  Google Scholar 

  10. D. Chen, Y. Wang, M. Hong, Nano Energy 1, 73 (2012)

    Article  Google Scholar 

  11. Q. Luo, X. Qiao, X. Fan, X. Zhang, Opt. Lett. 36, 2767 (2011)

    Article  ADS  Google Scholar 

  12. C. Davesnne, A. Ziani, C. Labbé, P. Marie, C. Frilay, X. Portier, Thin Solid Films 553, 33 (2014)

    Article  ADS  Google Scholar 

  13. V. Kumar, O.M. Ntwaeaborwa, H.C. Swart, J. Colloid Interf. Sci. 465, 295 (2016)

    Article  ADS  Google Scholar 

  14. Y. Liu, W. Luo, R. Li, G.K. Liu, M.R. Antinio, X. Chen, J. Phys. Chem. C 112, 686 (2008)

    Article  Google Scholar 

  15. N.A. Althumairi, I. Baig, T.S. Kayed, A. Mekki, A. Lusson, V. Sallet, A. Majid, A. Fouzri, Vacuum 198, 110874 (2022)

    Article  ADS  Google Scholar 

  16. C. Shivakumara, A.K. John, S. Behera, N. Dhananjaya, R. Saraf, Eur. Phys. J. Plus 132, 44 (2017)

    Article  Google Scholar 

  17. S. Bachir, J.C. Ronfard-Haret, K. Azuma, D. Kouyaté, J. Kossanyi, Chem. Phys. Lett. 213, 54 (1993)

    Article  ADS  Google Scholar 

  18. T. Shalapska, G. Stryganyuk, Y. Romanyshyn, D. Trots, P. Demchenko, A. Gektin, A. Voloshinovskii, P. Dorenbos, J. Phys. Appl. Phys. 43, 405404 (2010)

    Article  Google Scholar 

  19. F. Ehré, C. Dufour, O. Blázquez, B. Garrido, W. Jadwisienczak, D.C. Ingram, J. Cardin, F. Gourbilleau, X. Portier, C. Guillaume, B. Liu, C. Labbé, E.C.S. Transactions, Electrochemical Society. Inc 85, 9 (2018)

    Google Scholar 

  20. H. Huang, G. Fang, X. Mo, L. Yuan, H. Zhou, M. Wang, H. Xiao, X. Zhao, Appl. Phys. Lett. 94, 063512 (2009)

    Article  ADS  Google Scholar 

  21. J.B. You, X.W. Zhang, H.P. Song, J. Ying, Y. Guo, A.L. Yang, Z.G. Yin, N.F. Chen, Q.S. Zhu, J. Appl. Phys. 106, 043709 (2009)

    Article  ADS  Google Scholar 

  22. F.-C. Chiu, Adv. Mater. Sci. Eng. 2014, 1 (2014)

    Google Scholar 

  23. N. Korsunska, L. Borkovska, L. Khomenkova, T. Sabov, O. Oberemok, O. Dubikovsky, Z. Ya Zhuchenko, A. Zolotovsky, I.N. Demchenko, Y. Syryanyy, C. Guillaume, C. Labbe, X. Portier, Appl. Surf. Sci. 528, 146913 (2020)

    Article  Google Scholar 

  24. N.A. Althumairi, I. Baig, T.S. Kayed, A. Mekki, A. Lusson, V. Sallet, A. Majid, S. Akhtar, A. Fouzri, Appl. Phys. A 128, 559 (2022)

    Article  ADS  Google Scholar 

  25. W. Chebil, M.A. Boukadhaba, A. Fouzri, Superlattices Microstruct. 95, 48 (2016)

    Article  ADS  Google Scholar 

  26. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy: a Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical (Physical Electronics, Chicago, 1995)

    Google Scholar 

  27. M. Wang, L. Jiang, E. Jung Kim, S. Hong Hahn, RSC Adv. 5, 87496 (2015)

    Article  ADS  Google Scholar 

  28. C. Guillaume, J.L. Frieiro, O. Blázquez, C. Labbe, J. López-Vidrier, B. Garrido, S. Hernández, B. Liu, L. Khomenkova, C. Frilay, F. Lemarié, C. Leroux, D. Pelloquin, X. Portier, Appl. Surf. Sci. 556, 149754 (2021)

    Article  Google Scholar 

  29. L.S. Dake, D.R. Baer, J.M. Zachara, Surf. Interface Anal. 14, 71 (1989)

    Article  Google Scholar 

  30. I.N. Reddy, C.V. Reddy, J. Shim, B. Akkinepally, M. Cho, K. Yoo, D. Kim, Catal. Today 340, 277 (2020)

    Article  Google Scholar 

  31. I. Ahmad, M. Shoaib Akhtar, E. Ahmed, M. Ahmad, V. Keller, W. Qamar Khan, N.R. Khalid, Sep. Purif. Technol. 237, 116328 (2020)

    Article  Google Scholar 

  32. N. Korsunska, L. Borkovska, L. Khomenkova, O. Gudymenko, V. Kladko, O. Kolomys, V. Strelchuk, Z. Tsybrii, C. Guillaume, C. Labbe, X. Portier, O. Melnichuk, L. Melnichuk, J. Lumin. 217, 116739 (2020)

    Article  Google Scholar 

  33. D. Kumar, M. Singh, A.K. Singh, AIP Conf. Proc. 1953, 030185 (2018)

    Article  Google Scholar 

  34. H. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology; WILEY_VCH Verlag GmbH and KGaA, Weinheim, (2009).

  35. A. Fouzri, N.A. Althumairi, V. Sallet, A. Lusson, Opt. Mater. 110, 110519 (2020)

    Article  Google Scholar 

  36. R. Raji, K.G. Gopchandran, J. Sci.: Adv. Mater. Devices 2, 51 (2017)

    Google Scholar 

  37. Y. Zhang, Y. Liu, L. Wu, E. Xie, J. Chen, J. Phys. Appl. Phys. 42, 085106 (2009)

    Article  ADS  Google Scholar 

  38. P. Chen, X. Ma, D. Yang, J. Alloys Compd. 431, 317 (2007)

    Article  Google Scholar 

  39. S. Zhao, F. Shu, Y. Li, C. Liu, W. Shan, Y. Cui, L. Yang, J. Nanosci. Nanotechnol. 12, 2607 (2012)

    Article  Google Scholar 

  40. A. Hastir, R.L. Opila, N. Kohli, Z. Onuk, B. Yuan, K. Jones, V.R.C. Singh, J. Mater. Sci. 52, 8502 (2017)

    Article  ADS  Google Scholar 

  41. N.S. Singh, S.D. Singh, S.D. Meetei, Chin. Phys. B 23, 058104 (2014)

    Article  Google Scholar 

  42. R.S. Ningthoujam, N.S. Gajbhiye, A. Ahmed, S.S. Umre, S.J. Sharma, J. Nanosci. Nanotechnol. 8, 3059 (2008)

    Article  Google Scholar 

  43. D.N. Anwar, A. Srivastava, IEEE Access 8, 159609 (2020)

    Article  Google Scholar 

  44. W. Young Kim, Y.-H. Kim, C.-G. Jhun, R. Wood, P. Mascher, C.-B. Moon, J. Appl. Phys. 111, 014507 (2012)

    Article  ADS  Google Scholar 

  45. P. Babu, K.H. Jang, E.S. Kim, L. Shi, H.J. Seo, J. Korean Phys. Soc. 54, 1488 (2009)

    Article  ADS  Google Scholar 

  46. M. Huang, S. Wang, G. Wan, X. Zhang, Y. Zhang, K. Ou, L. Yi, J. Mater. Sci. Mater. Electron. 29, 7213 (2018)

    Article  Google Scholar 

  47. G.H. Dieke, H.M. Crosswhite, Appl. Opt. 2, 675 (1963)

    Article  ADS  Google Scholar 

  48. G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience, New York, 1968)

    Google Scholar 

  49. P. Hazra, S.K. Singh, S. Jit, JSTS J. Semicond. Technol. Sci. 14, 117 (2014)

    Article  Google Scholar 

  50. F.Z. Bedia, A. Bedia, D. Kherbouche, B. Benyoucef, Int. J. Mater. Eng. 3, 59 (2013)

    Google Scholar 

  51. S. Baturay, Y.S. Ocak, D. Kaya, J. Alloys Compd. 645, 29 (2015)

    Article  Google Scholar 

  52. R. Romero, M.C. López, D. Leinen, F. Martıń, J.R. Ramos-Barrado, Mater. Sci. Eng. B 110, 87 (2004)

    Article  Google Scholar 

  53. R. Singh, M.A. Green, K. Rajkanan, Sol. Cells 3, 95 (1981)

    Article  ADS  Google Scholar 

  54. P. Klason, M.M. Rahman, Q.-H. Hu, O. Nur, R. Turan, M. Willander, Microelectron. J. 40, 706 (2009)

    Article  Google Scholar 

  55. B.O. Jung, J.H. Lee, J.Y. Lee, J.H. Kim, H.K. Cho, J. Electrochem. Soc. 159, H102–H106 (2011)

    Article  Google Scholar 

  56. G. Chen, F. Song, X. Xiong, X. Peng, Ind. Eng. Chem. Res. 52, 11228 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors take this opportunity to thank the Department of Physics, College of Science, Al Zulfi, Majmaah University, specifically Dr. Ibrahim Shaarany, for helpful technical assistance with equipment facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afif Fouzri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The original online version of this article was revised to missing Fig 16c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Althumairi, N.A., Fouzri, A., Kayed, T.S. et al. Microstructural, optical, and electrical properties of Eu, Tb co-doped ZnO micropods elaborated by chemical bath deposition on a p-Si substrate. Eur. Phys. J. Plus 137, 1097 (2022). https://doi.org/10.1140/epjp/s13360-022-03294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03294-2

Navigation