Skip to main content
Log in

\(\mathrm{Li}@\mathrm{C}_{n}\) immersed in nonideal classical plasmas

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present work considers an endohedrally encapsulated guest Li atom immersed in a nonideal classical plasma under a spherical encompassment. In this combined system, the Woods–Saxon potential is used as the model for endohedral fullerene (EF), while the model potential approach is employed for the Li atom. The relevant wave equation is solved by the tridiagonal matrix method. The energy states, oscillator strengths, dipole polarizabilities, orbital charge-currents and induced magnetic fields of the \(\mathrm{Li}@\mathrm{C}_{n}\) system are examined in detail for both structural effects and plasma shielding effects. The combined system under consideration and the corresponding investigations have never been reported in the literature before. Various types of EFs can be synthesized experimentally. However, considering the fact that experimental production is still in its infancy, the necessity of a great number of theoretical studies becomes clearer. The most important expectation in this work is to establish a tuning mechanism thanks to elucidating the effect of the structural specifications of EFs on the mentioned atomic properties as well as the functionality of the plasma shielding effect, which we believe is provided. All parameter values in this work are experimentally achievable. Both special data values and data ranges, which causes remarkable features for the system, are determined. By examining these data, the alternatives of the parameters to each other for the purpose-oriented functions are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data added to any data repository. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Matsuo, H. Okada, H. Ueno, Endohedral Lithium-containing Fullerenes, vol. 1 (Springer, Singapore, 2017)

    Book  Google Scholar 

  2. Y. Pan, X. Liu, W. Zhang, Z. Liu, G. Zeng, B. Shao, Q. Liang, Q. He, X. Yuan, D. Huang, M. Chen, Appl. Catal. B Environ. 265, 118579 (2020)

    Article  Google Scholar 

  3. C. Ju, D. Sriter, J. Du, Phys. Rev. A 75, 012318 (2007)

    Article  ADS  Google Scholar 

  4. L. Becker, R.J. Poreda, T.E. Bunch, Proc. Natl. Acad. Sci. 97, 2979 (2000)

    Article  ADS  Google Scholar 

  5. R. Bakry, R.M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, C.W. Huck, G.K. Bonn, Int. J. Nanomed. 2, 639 (2007)

    Google Scholar 

  6. R.C. Masters, A.J. Pearson, T.S. Glen, F.-C. Sasam, L. Li, M. Dapor, A.M. Donald, D.G. Lidzey, C. Rodenburg, Nat. Commun. 6, 6928 (2015)

    Article  ADS  Google Scholar 

  7. H. Shinohara, N. Tagmatarchis, S.H. Kroto, Endohedral Metallofullerenes: Fullerenes with Metal Inside, 1st edn. (Wiley, 2015)

    Book  Google Scholar 

  8. V.K. Dolmatov, A. Baltenkov, J.-P. Connerade, S. Manson, Radiat. Phys. Chem. 70, 417 (2004)

    Article  ADS  Google Scholar 

  9. O. Motapon, S.A. Ndengue, K.D. Sen, Int. J. Quantum Chem. 111, 4425 (2011)

    Article  Google Scholar 

  10. V.K. Dolmatov, A. Edwards, J. Phys. B Atomic Mol. Opt. Phys. 52, 105001 (2019)

    Article  ADS  Google Scholar 

  11. K.A. Dubey, K. Srikanth, T.R. Rao, J. Jose, Comput. Phys. Commun. 4, 075016 (2020)

    Google Scholar 

  12. S.A. Ndengue, O. Motapon, J. Phys. B Atomic Mol. Opt. Phys. 41, 045001 (2008)

    Article  ADS  Google Scholar 

  13. V.K. Dolmatov, J.L. King, J.C. Oglesby, J. Phys. B Atomic Mol. Opt. Phys. 45, 105102 (2012)

    Article  ADS  Google Scholar 

  14. Y.B. Xu, M.Q. Tan, U. Becker, Phys. Rev. Lett. 76, 3538 (1996)

    Article  ADS  Google Scholar 

  15. R.D. Woods, D.S. Saxon, Phys. Rev. 95, 577 (1954)

    Article  ADS  Google Scholar 

  16. C.Y. Lin, Y.K. Ho, J. Phys. B Atomic Mol. Opt. Phys. 45, 145001 (2012)

    Article  ADS  Google Scholar 

  17. P.C. Deshmukh, J. Jose, H.R. Varma, S.T. Manson, Eur. Phys. J. D 75, 166 (2021)

    Article  ADS  Google Scholar 

  18. S.K. Chaudhuri, P.K. Mukherjee, B. Fricke, Eur. Phys. J. D 70, 196 (2016)

    Article  ADS  Google Scholar 

  19. E. Cuestas, P. Serra, Int. J. Mod. Phys. B 30, 1650055 (2016)

    Article  ADS  Google Scholar 

  20. E.M. Nascimento, F.V. Prudente, M.N. Guimaraes, A.M. Maniero, J. Phys. B Atomic Mol. Opt. Phys. 015003, 44 (2011)

    Google Scholar 

  21. L. Wu, S. Zhang, B. Li, Phys. Lett. A 384, 126033 (2020)

    Article  Google Scholar 

  22. C. Martinez-Flores, Phys. Lett. A 386, 126988 (2021)

    Article  MathSciNet  Google Scholar 

  23. J.P. Connerade, V.K. Dolmatov, S.T. Manson, J. Phys. B Atomic Mol. Opt. Phys. 33, 2279 (2000)

    Article  ADS  Google Scholar 

  24. A. Kumar, H.R. Varma, P.C. Deshmukh, S.T. Manson, V.K. Dolmatov, A. Kheifets, Phys. Rev. A 94, 43401 (2016)

    Article  ADS  Google Scholar 

  25. S. Saha, A. Thuppilakkadan, H.R. Varma, J. Jose, J. Phys. B Atomic Mol. Opt. Phys. 52, 145001 (2019)

    Article  ADS  Google Scholar 

  26. A. Ponzi, P. Decleva, S.T. Manson, Phys. Rev. A 92, 023405 (2015)

    Article  ADS  Google Scholar 

  27. A. Müller, M. Martins, A.L.D. Kilcoyne, R.A. Phaneuf, J. Hellhund, A. Borovik, K. Holste, S. Bari, T. Buhr, S. Klumpp, A. Perry-Sassmannshausen, S. Reinwardt, S. Ricz, K. Schubert, S. Schippers, Phys. Rev. A 99, 063401 (2019)

    Article  ADS  Google Scholar 

  28. R. Obaid, H. Xiong, S. Augustin, K. Schnorr, U. Ablikim, A. Battistoni, T.J.A. Wolf, R.C. Bilodeau, T. Osipov, K. Gokhberg, D. Rolles, A.C. LaForge, N. Berrah, Phys. Rev. Lett. 124, 113002 (2020)

    Article  ADS  Google Scholar 

  29. R. Brandenburg, J. Schweinzer, S. Fiedler, F. Aumayr, H.P. Winter, Plasma Phys. Control. Fusion 41, 471 (1999)

    Article  ADS  Google Scholar 

  30. S. Nakai, K. Mima, Rep. Progress Phys. 67, 321 (2004)

    Article  ADS  Google Scholar 

  31. J.K. Saha, S. Bhattacharyya, T.K. Mukherjee, P.K. Mukherjee, J. Phys. B Atomic Mol. Opt. Phys. 42, 245701 (2009)

    Article  ADS  Google Scholar 

  32. Y.Y. Qi, J.G. Wang, R.K. Janev, Phys. Rev. A 80, 063404 (2009)

    Article  ADS  Google Scholar 

  33. S. Sahoo, Y.K. Ho, Phys. Plasmas 13, 063301 (2006)

    Article  ADS  Google Scholar 

  34. T.N. Chang, T.K. Fang, Y.K. Ho, Phys. Plasmas 20, 092110 (2013)

    Article  ADS  Google Scholar 

  35. S. Kar, Y. Wang, Z. Jiang, S. Li, K. Ratnevalu, Phys. Plasmas 21, 012105 (2014)

    Article  ADS  Google Scholar 

  36. Y. Ning, Z.C. Yun, Y.K. Ho, Phys. Plasmas 22, 013302 (2015)

    Article  ADS  Google Scholar 

  37. M. Das, Phys. Plasmas 19, 092707 (2012)

    Article  ADS  Google Scholar 

  38. S. Kar, H.W. Li, P. Jiang, Phys. Plasmas 20, 083302 (2013)

    Article  ADS  Google Scholar 

  39. K. Ratnevalu, A. Ghoshal, S. Nayek, A. Bhattacharya, M.Z.M. Kamali, Eur. Phys. J. D 70, 1 (2016)

    Article  Google Scholar 

  40. P. Rej, A. Ghoshal, J. Phys. B Atomic Mol. Opt. Phys. 49, 1 (2016)

    Article  Google Scholar 

  41. Y.Y. Qi, J.G. Wang, R.K. Janev, Phys. Rev. A 78, 062511 (2008)

    Article  ADS  Google Scholar 

  42. Y.Y. Qi, Y. Wu, J.G. Wang, Y.Z. Qu, Phys. Plasmas 16, 023502 (2009)

    Article  ADS  Google Scholar 

  43. C. Martinez-Flores, R. Cabrera-Trujillo, Matter Radiat. Extremes 3, 227 (2018)

    Article  Google Scholar 

  44. V.E. Fortov, I.T. Iakubov, The Physics of Non-ideal Plasma (World Scientific, 2000)

    Book  MATH  Google Scholar 

  45. P. Debye, E. Hückel, Phys. Z. 24, 185 (1923)

    Google Scholar 

  46. H. Yukawa, Proc. Phys. Math. Soc. Jpn. 17, 48 (1935)

    Google Scholar 

  47. D. Zubarev, V. Morozov, G. Röpke, Statistical Mechanics of Nonequilibrium Processes, in Basic Concepts, Kinetic Theory, vol. 1, (Akademie Verlag, Belin, 1996)

    MATH  Google Scholar 

  48. M. Aramaki, in Proceedings of the 12th Asia Pacific Physics Conference vol 1, (2014) p. 015017

  49. B. Das, A. Karmakar, A. Ghoshal, Phys. Plasmas 26, 083507 (2019)

    Article  ADS  Google Scholar 

  50. B. Das, A. Ghoshal, Int. J. Quantum Chem. 121, e26649 (2021)

    Article  Google Scholar 

  51. B. Das, A. Ghoshal, Phys. Rev. E 101, 043202 (2020)

    Article  ADS  Google Scholar 

  52. B. Das, A. Ghoshal, Few-Body Syst. 61, 22 (2020)

    Article  ADS  Google Scholar 

  53. S. Mondal, S.K. Nayek, J.K. Saha, Eur. Phys. J. Plus 137, 373 (2022)

    Article  Google Scholar 

  54. K.D. Sen, K. Kumar, C. Yadav, V. Prasad, Eur. Phys. J. Plus 137, 78 (2022)

    Article  Google Scholar 

  55. I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H.A. Dürr, T.A. Ostler, J. Barker, R.F.L. Evans, R.W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, Th. Rasing, A.V. Kimel, Nat. Phys. 472, 205 (2011)

    Article  Google Scholar 

  56. G.P. Zhang, G. Lefkidis, W. Hübner, Y. Bai, J. Appl. Phys. 111, 07C508 (2012)

    Article  Google Scholar 

  57. G.P. Zhang, W. Hübner, G. Lefkidis, Y. Bai, T.F. George, Nat. Phys. 5, 499 (2009)

    Article  Google Scholar 

  58. M.K. Bahar, Chem. Phys. 557, 111484 (2022)

    Article  Google Scholar 

  59. E.K. Campbell, M. Holz, D. Gerlich, J.P. Maier, Nature 523, 322 (2015)

    Article  ADS  Google Scholar 

  60. G. Xu, M.D. Barriga-Carrasco, A. Blazevic, B. Borovkov, D. Casas et al., Phys. Rev. Lett. 119, 204801 (2017)

    Article  ADS  Google Scholar 

  61. C. Teske, Y. Liu, S. Blaes, J. Jacoby, Phys. Plasmas 19, 033505 (2012)

    Article  ADS  Google Scholar 

  62. G.N. Churilov, P.V. Novikov, V.E. Tarabanko, V.A. Lopatin, N.G. Vnukova, N.V. Bulina, Carbon 40(6), 891 (2002)

    Article  Google Scholar 

  63. W. Oohara, R. Hatakeyama, Phys. Rev. Lett. 91(20), 205005 (2003)

    Article  ADS  Google Scholar 

  64. R.A. Ganeev, H. Singhal, P.A. Naik, J.A. Chakera, A.K. Srivastava, T.S. Dhami, P.D. Gupta, J. Appl. Phys. 106, 103103 (2009)

    Article  ADS  Google Scholar 

  65. F.B. Baimbetov, Kh.T. Nurekenov, T.S. Ramazanov, Phys. Lett. A 202, 211 (1995)

    Article  ADS  Google Scholar 

  66. A. Hilbert, Adv. Atomic Mol. Phys. 18, 309 (1982)

    Article  ADS  Google Scholar 

  67. G. Peach, H.E. Saraph, M.J. Seaton, J. Phys. B 21, 3669 (1988)

    Article  ADS  Google Scholar 

  68. S. Sahoo, Y.K. Ho, J. Phys. B 33, 2195 (2000)

    Article  ADS  Google Scholar 

  69. S. Sahoo, Y.K. Ho, Phys. Rev. A 65, 015403 (2001)

    Article  ADS  Google Scholar 

  70. S. Sahoo, Y.K. Ho, Chin. J. Phys. 43, 58 (2005)

    Google Scholar 

  71. H.W. Li, S. Kar, Phys. Plasmas 19, 073303 (2012)

    Article  ADS  Google Scholar 

  72. F. Maeder, W. Kutzelnigg, Chem. Phys. 42, 95 (1979)

    Article  Google Scholar 

  73. B.N. Datta, Numerical Linear Algebra and Applications, 2nd edn. (SIAM, Philadelphia, 2010)

    Book  MATH  Google Scholar 

  74. A. Messiah, Quantum Mechanics (Elsevier, Amsterdam, 1961)

    MATH  Google Scholar 

  75. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One and Two-Electron Atoms (Plenum, New York, 1977)

    Book  MATH  Google Scholar 

  76. M.K. Bahar, Eur. Phys. J. Plus 136, 1119 (2021)

    Article  Google Scholar 

  77. I. Barth, J. Manz, Phys. Rev. A 75, 012510 (2007)

    Article  ADS  Google Scholar 

  78. W. Greiner, Theoretische Physik, Bd. 4: Quantenmechanik (Einführung Verlag Harri Deutsch, Frankfurt am Main, 2005)

  79. J.O. Hirschfelder, C.F. Curtis, R.B. Bird, Molecular Theory of Gases and Liquids, vol. 264 (Wiley, 1954)

    MATH  Google Scholar 

  80. B. Saha, P.K. Mukherjee, G.H.F. Diercksen, Astron. Astrophys. 396, 337 (2002)

    Article  ADS  Google Scholar 

  81. S.K. Nayek, J.K. Saha, Braz. J. Phys. 51, 927 (2021)

    Article  ADS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Mustafa Kemal Bahar is the only author in the study.

Corresponding author

Correspondence to Mustafa Kemal Bahar.

Ethics declarations

Conflicts of interest/Competing interests

Mustafa Kemal Bahar is the only author in the study.

Code availability

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahar, M.K. \(\mathrm{Li}@\mathrm{C}_{n}\) immersed in nonideal classical plasmas. Eur. Phys. J. Plus 137, 1076 (2022). https://doi.org/10.1140/epjp/s13360-022-03282-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03282-6

Navigation