Skip to main content
Log in

Control of entanglement, single excited-state population and memory-assisted entropic uncertainty of two qubits moving in a cavity by using a classical driving field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the exact Markovian and non-Markovian dynamics of entanglement, excited-state population, and quantum memory-assisted entropic uncertainty of two dipole-dipole interacting atom qubits inside a leaky cavity. The qubits move inside the cavity and interact with a classical driving laser field. Besides analyzing the possibility of steady-state entanglement generation and protection, we investigate the influence of the system parameters on the dynamics of entanglement, single excited-state population, and memory-assisted entropic uncertainty. As a result, we find that, although the dipole-dipole interaction, as well as the qubit velocity, can destroy the initial qubit-qubit entanglement, by applying a classical field both the excited-state population and entanglement remain at their maximal value as time passes. In particular, we show that much better performance of preservation is observed when the frequency of the classical driving field is resonant with the qubits transition frequency. We also examine the effect of the classical driving on the quantum memory-assisted entropic uncertainty of qubits. Our numerical result reveals that when both the qubits are driven by the classical fields, the uncertainty and its lower bound are reduced, and consequently the measurement accuracy is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

The datasets analysed during the current study are available from the corresponding author on reasonable request.

References

  1. E. Schrodinger, Discussion of probability relations between separated systems. Proc. Cambridge Philos. Soc. 31, 555 (1935)

    Article  ADS  MATH  Google Scholar 

  2. M. Murao, D. Jonathan, M.B. Plenio, V. Vedral, Phys. Rev. A. 59, 156 (1999)

    Article  ADS  Google Scholar 

  3. C.H. Bennett, S.J. Wiesner, Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. A.K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. H.P. Breuer, F. Petruccione, The theory of open quantum systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  7. C. Simon, J. Kempe, Phys. Rev. A. 65(5), 052327 (2002)

    Article  ADS  Google Scholar 

  8. T. Yu, J.H. Eberly, Phys. Rev. B. 66, 193306 (2002)

    Article  ADS  Google Scholar 

  9. W. Dur, H.J. Briegel, Phys. Rev. Lett. 92, 180403 (2004)

    Article  ADS  Google Scholar 

  10. P.W. Shor, Phys. Rev. A. 52, 2493 (1995)

    Article  ADS  Google Scholar 

  11. J.I. Cirac, T. Pellizzari, Science 273, 1207 (1996)

    Article  ADS  Google Scholar 

  12. M. Rafiee, A. Nourmandipour, S. Mancini, Phys. Rev. A. 94, 012310 (2016)

    Article  ADS  Google Scholar 

  13. Reid Carvalho, Phys Hope, Rev. A. 78, 012334 (2008)

    Article  Google Scholar 

  14. S. Maniscalco, F. Francica, R.L. Zaffino, N.L. Gullo, F. Plastina, Phys. Rev. Lett. 100, 090503 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  15. N. Ba, J. Kim, K. Kim, Phys. Rev. A. 82(3), 032316 (2010)

    Article  ADS  Google Scholar 

  16. X. Xiao, Y. Li, K. Zeng, C. Wu, J. Phys. B: At. Mol. Opt. Phys. 42, 235502 (2009)

    Article  ADS  Google Scholar 

  17. Huang Li-Yuan, Fang Mao-Fa, Chin. Phys. B. 19, 090318 (2010)

    Article  Google Scholar 

  18. B. Raffah, S. Abdel-Khalek, K. Berrada et al., Eur. Phys. J. Plus. 135, 467 (2020)

    Article  Google Scholar 

  19. M. Forozesh, A. Mortezapour, A. Nourmandipour, Eur. Phys. J. Plus. 136, 778 (2021)

    Article  Google Scholar 

  20. S. Damodarakurup, M. Lucamarini, G. Di Giuseppe, D. Vitali, P. Tombesi, Phys. Rev. Lett. 103, 040502 (2009)

    Article  ADS  Google Scholar 

  21. D. Vitali, P. Tombesi, Phys. Rev. A. 59, 4178 (1999)

    Article  ADS  Google Scholar 

  22. M.A. Fasihi, B. Mojaveri, Quant. Inf. Process. 18, 75 (2019)

    Article  ADS  Google Scholar 

  23. Z.X. Man, Y.J. Xia, R. Lo, Sci. Rep. 5(1), 13843 (2015)

    Article  ADS  Google Scholar 

  24. N. Behzadi, B. Ahansaz, E. Feizi, Eur. Phys. J. D. 71, 280 (2017)

    Article  ADS  Google Scholar 

  25. A. Dehghani, B. Mojaveri, M. Vaez, Quant. Inf. Proc. 19, 1 (2020)

    Article  Google Scholar 

  26. B. Mojaveri, A. Dehghani, Z. Ahmadi, Eur. Phys. J. Plus. 136, 1 (2021)

    Article  Google Scholar 

  27. Y. Jia, J. Hu, Phys. E. Low-dimens. Syst. Nanostruct. 114, 113583 (2019)

    Article  Google Scholar 

  28. Y. Akbari-Kourbolagh, S. Razavian, Eur. Phys. J. Plus. 135, 284 (2020)

    Article  Google Scholar 

  29. B. Mojaveri, A. Dehghani, Z. Ahmadi, S. Amiri, Eur. Phys. J. Plus. 135(2), 1–25 (2020)

    Article  Google Scholar 

  30. A. Nourmandipour, A. Vafafard, A. Mortezapour, R. Franzosi, Sci. Rep. 11, 16259 (2021)

    Article  ADS  Google Scholar 

  31. A. Mortezapour, M.A. Borji, R.L. Franco, Laser Phys. Lett. 14, 055201 (2017)

    Article  ADS  Google Scholar 

  32. W. Chao, F. Mao-Fa, Chin. Phys. B. 19, 020309 (2010)

    Article  Google Scholar 

  33. D. Park, arXiv preprint arXiv:1703.09341 (2017)

  34. S. Golkar, M.K. Tavassoly, A. Nourmandipour, J. Opt. Soc. Am. B. 37, 400 (2020)

    Article  ADS  Google Scholar 

  35. G. Calajo, P. Rabl, Phys. Rev. A. 95, 043824 (2017)

    Article  ADS  Google Scholar 

  36. L. Garcia-Alvarez, S. Felicetti, E. Rico, E. Solano, C. Sabin, Sci. Rep. 7, 657 (2017)

    Article  ADS  Google Scholar 

  37. S. Felicetti, C. Sabin, I. Fuentes, L. Lamata, G. Romero, E. Solano, Phys. Rev. B. 92, 064501 (2015)

    Article  ADS  Google Scholar 

  38. D. Moustos, C. Anastopoulos, Phys. Rev. D. 95, 025020 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  39. S. Golkar, M.K. Tavassoly, A. Nourmandipour, Chin. Phys. B. 29, 050304 (2020)

    Article  ADS  Google Scholar 

  40. F. Nosrati, A. Mortezapour, R. LoFranco, Phys. Rev. A. 101, 012331 (2020)

    Article  ADS  Google Scholar 

  41. A. Mortezapour, M.A. Borji, D. Park, R. Lo, Open Sys. Inf. Dyn. 24, 1740006 (2017)

    Article  Google Scholar 

  42. S. Golkar, M.K. Tavassoly, Mod. Phys. Lett. A. 34, 1950077 (2019)

    Article  ADS  Google Scholar 

  43. B.G. Englert, J. Schwinger, A.O. Barut, M.O. ScuUy, Europhys. Lett. 14, 25 (1991)

    Article  ADS  Google Scholar 

  44. S. Haroche, M. Brune, J.M. Raimond, Europhys. Lett. 14, 19 (1991)

    Article  ADS  Google Scholar 

  45. Y. Li, J. Zhou, H. Guo, Phys. Rev. A 79, 012309 (2009)

    Article  ADS  Google Scholar 

  46. B. Mojaveri, A. Dehghani, Z. Ahmadi, Phys. Scr. 96, 115102 (2021)

    Article  Google Scholar 

  47. B. Mojaveri, A. Dehghani, M.A. Fasihi, T. Mohammadpour, Int. J. Mod. Phys. B. 33, 1950035 (2019)

    Article  ADS  Google Scholar 

  48. E. Faraji, H.R. Baghshahi, M.K. Tavassoly, Mod. Phys. Lett. B. 31, 1750038 (2017)

    Article  ADS  Google Scholar 

  49. C. Leonardi, A. Vagliea, Opt. Commun. 97, 130 (1993)

    Article  ADS  Google Scholar 

  50. R.J. Cook, Phys. Rev. A. 20, 224 (1979)

    Article  ADS  Google Scholar 

  51. M. Wilkens, Z. Bialynicka-Birula, P. Meystre, Phys. Rev. A. 45, 477 (1992)

    Article  ADS  Google Scholar 

  52. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

    MATH  Google Scholar 

  53. B.J. Dalton, S.M. Barnett, B.M. Garraway, Phys. Rev. A. 64, 053813 (2001)

    Article  ADS  Google Scholar 

  54. N. Ba, J. Kim, K. Kim, Phys. Rev. A. 82, 032316 (2010)

    Article  ADS  Google Scholar 

  55. B. Bellomo, R. LoFranco, G. Compagno, Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  56. D.V. Widder, The laplace transform (Princeton Univ. Press, Princeton, 1946)

    Google Scholar 

  57. J. Fischbach, Steady-state entanglement in bipartite systems under the influence of non-Markovian environments (Universitat Ulm, Diss, 2016)

  58. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  59. C.J. Hood et al., Science 287, 1447 (2000)

    Article  ADS  Google Scholar 

  60. P.W.H. Pinkse et al., Nature 404, 365 (2000)

    Article  ADS  Google Scholar 

  61. P. Lambropoulos, G.M. Nikolopoulos, T.R. Nielsen, S. Bay, Rep. Prog. Phys. 63, 455 (2000)

    Article  ADS  Google Scholar 

  62. P. Lodahl et al., Nature 430, 654 (2004)

    Article  ADS  Google Scholar 

  63. M. Berta et al., Nat. Phys. 6, 659 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Mojaveri.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojaveri, B., Dehghani, A. & Taghipour, J. Control of entanglement, single excited-state population and memory-assisted entropic uncertainty of two qubits moving in a cavity by using a classical driving field. Eur. Phys. J. Plus 137, 1065 (2022). https://doi.org/10.1140/epjp/s13360-022-03230-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03230-4

Navigation