Skip to main content
Log in

Thermodynamic properties, thermal image and phase transition of Einstein-Gauss-Bonnet black hole coupled with nonlinear electrodynamics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We obtain an exact solution of AdS black hole solution in Einstein-Gauss-Bonnet (EGB) gravity coupled with nonlinear electrodynamics. It interpolates with the AdS regular black hole and AdS EGB black hole in the absence of the Gauss-Bonnet coupling constant and both magnetic monopole charge and deviation parameter, respectively. Based on horizon thermodynamics, we study the thermodynamic properties of the obtained solution (e.g., mass, temperature, entropy, heat capacity and free energy). The Hawking temperature of the nonsingular black hole gets the maximum value at the point where specific heat diverges and the second-order phase transition occurs at the same point. We find that the smaller nonsingular black holes are stable due to positive heat capacity and negative free energy. We explicitly trace the relations between the black hole shadow and the critical behavior of charged EGB AdS regular black hole in the extended phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility Statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. B.P. Abbott et al., Virgo and LIGO Scientific Collaborations. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. B.P. Abbott et al., Virgo and LIGO Scientific Collaborations. Phys. Rev. Lett. 116, 241102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. K. Akiyama et al., Event Horizon Telescope Collaboration. Astrophys. J. 875, L1 (2019)

    Article  ADS  Google Scholar 

  4. T.D. Lee, G.C. Wick, Nucl. Phys. B 9, 209 (1969)

    Article  ADS  Google Scholar 

  5. T.D. Lee, G.C. Wick, Phys. Rev. D 2, 1033 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  6. D.V. Singh, S. Upadhyay, S. Ali, Int. J. Mod. Phys. A 37, 2250049 (2022)

    Article  ADS  Google Scholar 

  7. D. Lovelock, J. Math. Phys. 12, 498 (1971)

    Article  ADS  Google Scholar 

  8. C. Lanczos, Ann. Math. 39, 842 (1938)

    Article  MathSciNet  Google Scholar 

  9. B. Zwiebach, Phys. Lett. B 156, 315 (1985)

    Article  ADS  Google Scholar 

  10. D.G. Boulware, S. Deser, Phys. Rev. Lett. 55, 2656 (1985)

    Article  ADS  Google Scholar 

  11. R.G. Cai, Phys. Rev. D 65, 084014 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Glavan, C. Lin, Phys. Rev. Lett. 124, 081301 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Gurses, T.C. Sisman, B. Tekin, Phys. Rev. Lett. 125, 149001 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  14. K. Aolki, M.A. Gorji, S. Mukohyama, Phys. Lett. B 810, 135843 (2020)

    Article  MathSciNet  Google Scholar 

  15. K. Aolki, M.A. Gorji, S. Mukohyama, JCAP 2009, 014 (2020)

    ADS  Google Scholar 

  16. D.V. Singh, B.K. Singh, S. Upadhyay, Annals Phys. 434, 168642 (2021)

    Article  Google Scholar 

  17. P.G.S. Fernandes, Phys. Lett. B 805, 135468 (2020)

    Article  MathSciNet  Google Scholar 

  18. S. Upadhyay, D.V. Singh, Eur. Phys. J. Plus 137, 383 (2022)

    Article  Google Scholar 

  19. N. Godani, D.V. Singh, G.C. Samanta, Phys. Dark Univ. 35, 100952 (2022)

    Article  Google Scholar 

  20. K. Jusufi, A. Banerjee, S.G. Ghosh, Eur. Phys. J. C 80, 698 (2020)

    Article  ADS  Google Scholar 

  21. G. Panotopoulos, A. Pradhan, T. Tangphati, A. Banerjee, Chin. J. Phys. 77, 2106 (2022)

    Article  Google Scholar 

  22. T. Tangphati, A. Pradhan, A. Banerjee, G. Panotopoulos, Phys. Dark Univ. 33, 100877 (2021)

    Article  Google Scholar 

  23. J.M.Z. Pretel, A. Banerjee, A. Pradhan, Eur. Phys. J. C 82, 180 (2022)

    Article  ADS  Google Scholar 

  24. T. Tangphati, A. Pradhan, A. Errehymy, A. Banerjee, Phys. Lett. B 819, 136423 (2021)

    Article  Google Scholar 

  25. M. Born, L. Infeld, Proc. R. Soc. Lond. 144, 425 (1934)

    ADS  Google Scholar 

  26. E.S. Fradkin, A.A. Tseytlin, Phys. Lett. B 163, 123 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  27. E. Bergshoeff, E. Sezgin, C.N. Pope, P.K. Townsend, Phys. Lett. B 188, 70 (1987)

    Article  ADS  Google Scholar 

  28. W. Javed, R. Babar, A. Ovxddotgun, Phys. Rev. D. 100, 104032 (2019)

    Article  ADS  Google Scholar 

  29. K. Jusufi, A. Ovxddotgun, A. Banerjee, I. Sakalli, Eur. Phys. J. Plus 134, 428 (2019)

    Article  Google Scholar 

  30. H. Salazar I., A. Garcia D. and J. Plebanski, J. Math. Phys., 28, 2171 (1987)

  31. E. Ayon-Beato, A. Garcia, Phys. Rev. Lett. 80, 5056 (1998)

    Article  ADS  Google Scholar 

  32. E. Ayon-Beato, A. Garcia, Gen. Rel. Grav. 31, 629 (1999)

    Article  ADS  Google Scholar 

  33. E. Ayon-Beato, A. Garcia, Phys. Lett. B 493, 149 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Ovxddotgun, Phys. Lett. B 820, 136517 (2021)

    Article  Google Scholar 

  35. W. Javed, J. Abbas, A. Ovxddotgun, Eur. Phys. J. C 79, 694 (2019)

    Article  ADS  Google Scholar 

  36. S. Ali, S.G. Ghosh, Phys. Rev. D 98, 084025 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  37. ’D. V. Singh, S. G. Ghosh, S. D. Maharaj, Annals Phys. 412, 168025 (2019)

  38. ’A. Kumar, D. V. Singh, S. G. Ghosh, Eur. Phys. J. C 79, 275 (2019)

  39. D. V. Singh, S. Siwach, arXiv: 1909.11529 [hep-th]

  40. J. M. Bardeen, Conference Proceedings of GR5, Tbilisi, USSR, 1968, p. 174

  41. J.D. Bekenstein, Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  42. S.W. Hawking, Comm. Math. Phys. 43, 19 (1975)

    Article  Google Scholar 

  43. B.L. Hu, Int. J. Mod. Phys. D 20, 697 (2011)

    Article  ADS  Google Scholar 

  44. D.V. Singh, S.G. Ghosh, S.D. Maharaj, Nucl. Phys. B 981, 115854 (2022)

    Article  Google Scholar 

  45. E. Ayon-Beato, A. Garcia, Phys. Lett. B 464, 25 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  46. K.A. Bronnikov, Phys. Rev. D 63, 044005 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  47. D.V. Singh, S. Siwach, Phys. Lett. B. 408, 135658 (2020)

    Article  Google Scholar 

  48. S.G. Ghosh, D.V. Singh, R. Kumar, S.D. Maharaj, Annals Phys. 424, 168347 (2021)

    Article  Google Scholar 

  49. A.G. Tzikas, Phys. Lett. B 788, 219 (2019)

    Article  ADS  Google Scholar 

  50. R. Kumar, S.G. Ghosh, A. Wang, Phys. Rev. D 100, 124024 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  51. B.P. Singh, S.G. Ghosh, Annals Phys. 395, 127 (2018)

    Article  ADS  Google Scholar 

  52. F. Ahmed, D.V. Singh, S.G. Ghosh, Gen. Rel. Grav. 54, 21 (2022)

    Article  ADS  Google Scholar 

  53. F. Ahmed, D.V. Singh, S.G. Ghosh, hyperimage http://arxiv.org/abs/2008.10241arXiv:2008.10241 [gr-qc]

Download references

Acknowledgements

One of us (D.V.S.) acknowledges University Grant Commission for the start-up grant (No.30-600/2021(BSR)/1630).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhaker Upadhyay.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D.V., Bhardwaj, V.K. & Upadhyay, S. Thermodynamic properties, thermal image and phase transition of Einstein-Gauss-Bonnet black hole coupled with nonlinear electrodynamics. Eur. Phys. J. Plus 137, 969 (2022). https://doi.org/10.1140/epjp/s13360-022-03208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03208-2

Navigation