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Abstract We calculate the renormalisation group running of the bosonic Standard Model (SM) effective operators at one loop and to
order v4/�4, with v ∼ 246 GeV being the electroweak scale and � the unknown new physics threshold. We focus on contributions
driven by one dimension-eight term and SM couplings, thus extending (and completing) the effort initiated in Chala et al. (SciPost
Phys 11:065, 2021). arXiv:2106.05291, in which quantum corrections from pairs of dimension-six interactions were considered. We
highlight some interesting consequences, including the renormalisation of loop-induced interactions by tree-level generated terms
and, more importantly, the validity of positivity bounds on different operators inducing anomalous gauge quartic couplings.

1 Introduction

The Standard Model (SM) effective field theory, commonly known as SMEFT [1], is currently one of the most popular descriptions
of the elementary particles and their interactions, mostly because it can correctly account for experimental observations not well
explained within the SM alone without conflicting with the null results for resonant searches encountered at different experiments
and in particular at the LHC. The appeal of the SMEFT also relies on the very mild assumptions on which it is built, namely the
validity of the SM gauge symmetry SU (3)c × SU (2)L ×U (1)Y and the presence of a mass gap between the electroweak (EW) scale
and the new physics threshold.

In the absence of lepton-number violation (LNV), the dimension-six terms of the SMEFT naively provide the dominant corrections
to SM predictions in low-energy observables. In recent years though, the next tower of operators, namely those of dimension eight,
are being more and more scrutinised from both the theory and experimental points of view [2]. One important reason for this is
that, in a number of observables, the leading dimension-six contributions vanish [3]. A more striking motivation is that dimension-
eight operators are the first ones subject to the so-called positivity constraints, which are theoretical bounds on the signs of certain
(combinations of) Wilson coefficients implied solely by the principles of unitarity and analyticity of the S-matrix [4]. Thus, any
experimental evidence of a violation of these constraints would indicate the invalidity of the EFT approach (for example, due to the
existence of new light degrees of freedom) or even the breakdown of some of the fundamental principles of modern physics.

In a previous work [5], we started efforts to renormalise the SMEFT to order v4/�4 (with v ∼ 246 GeV being the Higgs
vacuum expectation value), thus including dimension-eight interactions. In that paper, the renormalisation group evolution of the
bosonic sector of the SMEFT driven by pairs of dimension-six interactions at one-loop was computed. In this article, we focus
on the renormalisation of the same set of operators but as triggered by dimension-eight terms. It is worth mentioning that, during
the course of the work presented in this paper, a number of results related to the renormalisation of the dimension-eight SMEFT
were presented in Ref. [6]. These include the renormalisation group evolution (RGE) of both bosonic and fermionic operators, but
restricted to linear order in the Higgs quartic parameter and to quadratic order in the gauge couplings. We do compute the higher-
power corrections, which in particular induce (otherwise absent) mixing between several operators. Corrections to lower-dimensional
operators, proportional to the Higgs squared mass, that we also include here, were disregarded in Ref. [6] too.

This article is structured as follows. In Sect. 2 we introduce our notation and provide details on the calculation procedure. In
Sect. 3 we discuss the structure of the anomalous dimension matrix, drawing special attention to (i) elements that depart significantly
from their naive power counting estimate; and (ii) interactions that, despite arising only at loop-level in renormalisable models of
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new physics, are renormalised by operators that can be generated at tree level. (We do not provide explicit expressions of all the
RGEs in the text; they can be instead found in an auxiliary file on https://github.com/SMEFT-Dimension8-RGEs.) In Sect. 4, we
discuss the behaviour of some positivity bounds under the quantum corrections derived in this paper. We conclude in Sect. 5. We
dedicate “Appendix” to comparing our results with those obtained in Ref. [6].

2 Theory and conventions

The SMEFT Lagrangian is an expansion in inverse powers of the cut-off � � v. Assuming lepton-number conservation, it reads:

LSMEFT � LSM +
1

�2

∑

i

c(6)
i O(6)

i +
1

�4

∑

j

c(8)
j O(8)

j + · · · (1)

where LSM represents the SM dimension-four Lagrangian and, in our convention, i and j run over the operators in the bases of
dimension-six and dimension-eight interactions given in Refs. [7] (the “Warsaw” basis) and [8], respectively1. We borrow the
notation for the Wilson coefficients from this reference. The ellipses encode operators of dimension ten and higher.

We write the renormalisable SM Lagrangian as follows:

LSM � − 1

4
GA

μνG
Aμν − 1

4
Wa

μνW
a μν − 1

4
BμνB

μν

+ qα
L iD/ qα

L + lαL iD/ lαL + uα
R iD/ uα

R + dα
R iD/ dα

R + eα
R iD/ eα

R

+
(
Dμφ

)†(
Dμφ

)
+ μ2|φ|2−λ|φ|4−

(
yuαβq

α
L φ̃uβ

R + ydαβq
α
Lφdβ

R + yeαβ l
α
Lφeβ

R + h.c.
)
. (2)

We denote by e, u and d the right-handed leptons and quarks; while l and q stand for the left-handed counterparts. The letters W , B
and G refer to the EW gauge bosons and the gluon, respectively. We represent the Higgs doublet by φ � (φ+, φ0)T , and φ̃ � iσ2φ

∗
with σI (I � 1, 2, 3) being the Pauli matrices. Our expression for the covariant derivative is:

Dμ � ∂μ − ig1Y Bμ − ig2
σ I

2
W I

μ − ig3
λA

2
GA

μ, (3)

where g1, g2 and g3 represent, respectively, the U (1)Y , SU (2)L and SU (3)c gauge couplings, Y stands for the hypercharge and λA

are the Gell-Mann matrices.
To order v4/�4 and assuming lepton-number conservation, the dimension-eight Wilson coefficients are only renormalised by

dimension-eight couplings themselves, proportional to renormalisable terms, as well as by pairs of dimension-six interactions.
Schematically:

ċ(8)
i ≡ 16π2μ̃

dc(8)
i

dμ̃
� γi j c

(8)
j + γ ′

i jkc
(6)
j c(6)

k . (4)

The anomalous dimensions γ ′
i jk in the bosonic sector were computed in Ref. [5]. In this work, we focus on the γi j counterpart. The

dimension-eight terms renormalise lower-dimensional interactions too, proportional to μ2. We also calculate these corrections in
this work.

We carry renormalisation by computing the divergences of the operators in the basis of independent Green’s functions of Ref. [10],
which extends the basis of independent physical operators of Ref. [8]. The former operators can be projected onto the latter using
the relations derived through the equations of motion in Ref. [10]. This procedure ensures that only off-shell 1-particle irreducible
(1PI) Feynman diagrams have to be considered in the calculation.

For the computations of the diagrams, we use FeynArts [11] and FormCalc [12] using the Feynrules [13] model provided
in Ref. [10], too. We work in dimensional regularisation with space-time dimension d � 4 − 2ε, using the background field method
and the Feynman gauge. As a matter of example, we provide below a detailed computation of the mixing of O(1)

Bφ4D2 into the three

operators in the class φ4D4, showing explicitly that it vanishes.
Following the results of Ref. [10], the interactions O(1,2,3)

φ4D4 receive contributions from different redundant operators:

c(1)
φ4 → c(1)

φ4 + g2
1cB2D4 − g1c

(3)
Bφ2D4 − g2

2cW 2D4 + g2c
(3)
Wφ2D4 ,

c(2)
φ4 → c(2)

φ4 − g2
1cB2D4 + g1c

(3)
Bφ2D4 − g2

2cW 2D4 + g2c
(3)
Wφ2D4 ,

c(3)
φ4 → c(3)

φ4 + 2g2
2cW 2D4 − 2g2c

(3)
Wφ2D4 . (5)

Thus, one needs to compute the divergences of these operators generated by loops involving one insertion of O(1)
Bφ4D2 . We note,

however, that this insertion does not generate one-loop diagrams with only one W and two Higgses as external particles, or with two

1 Ref. [9] also presented a basis of dimension-8 SMEFT operators concurrent to Ref. [8].
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Fig. 1 One-loop diagrams for the process φ → φ†φφ. Dashed lines represent the Higgs doublet, wavy lines represent B bosons, and crosses represent

insertions of O(1)
Bφ4D2

externalB (orW ) bosons and no Higgses. This will be seen in more detail in the next section. Moreover, those diagrams renormalising
O(3)

Bφ2D4 necessarily involve a Higgs bubble, the divergence of which is proportional to μ2/�4 and hence of dimension six. Therefore,

the only relevant divergences are those of the operators φ4D4 themselves.
In order to compute these, we calculate the 1PI one-loop amplitude φ → φ†φφ; the corresponding Feynman diagrams are

obtained with FeynArts and are shown in Fig. 1. The computation of the amplitude is performed using FormCalc and the
divergent part of the result reads:

−iAUV � 1

64π2ε
c(1)
Bφ4D2

[
2(κ3333 − κ1233 − 2κ1323 − 2κ1333 − 2κ2333 + κ1313 + κ2323)

+ κ1133 + κ1123 + κ1213 + κ2233 + κ1112 − κ1113 + κ1222 − κ1223 − κ1322 + κ2223

]
, (6)

with κi jkl � (pi · p j )(pk · pl ). This divergence must be absorbed by local counterterms. In order to determine their values, we
compute the same φ → φ†φφ amplitude at tree-level in the EFT using again FormCalc. The result is given by:

−iAI R � 2c(1)
φ4 (−κ1213 + κ1322 + κ1323) + 2c(2)

φ4 (−κ1123 + κ1223 + κ1323)

+ 2c(3)
φ4 (−κ1213 + κ1223 + κ1233) + 2c(4)

φ4 (κ1212 + κ1213 − κ1223 − κ1233)

+ c(4)
φ4 (−κ1112 + κ1113 − κ1123 − κ1133 − κ1222 + κ1322 − κ2223 − κ2233)

+ c(6)
φ4 (κ1112 − κ1113 − κ1122 − κ1123 + κ1233 − κ1333 − κ2223 − κ2333)

+ 2c(6)
φ4 (κ1313 + κ1213 − κ1322 − κ1323) + 4c(8)

φ4 (−κ1112 − κ1113 + κ1123)

+ 2c(8)
φ4 (κ1111 + κ1122 + κ1133 + κ2233) + c(10)

φ4 (κ3333 + κ1122 + κ1133 + κ2233)

+ 2c(10)
φ4 (−κ1233 − κ1333 + κ2333) + c(11)

φ4 (κ2222 + κ1122 + κ1133 + κ2333)

+ 2c(11)
φ4 (−κ1222 − κ1322 + κ2223) + 2c(12)

φ4 (κ2323 + κ1123 − κ1223 − κ1323)

+ c(12)
φ4 (−κ1122 − κ1133 + κ1222 + κ1233 + κ1322 + κ1333 + κ2223 + κ2333) (7)

(There are also CP-violating counterterms that we ignore in this expression because they are not relevant to absorb the divergences
from the insertion of the CP-conservingO(1)

Bφ4D2 ). After equatingAUV andAI R , while applying momentum conservation, we obtain:

c(6)
φ4 � g2

64π2ε
c(1)
Bφ4D2 , c(10)

φ4 � g2

32π2ε
c(1)
Bφ4D2 , c(12)

φ4 � g2

32π2ε
c(1)
Bφ4D2 , (8)

with all other counterterms being zero. These particular φ4D4 operators are redundant and do not contribute to O(1,2,3)
φ4D4 on-shell as

indicated in Eq. (5) (in fact they only contribute to operators in the φ6D2 and φ8 classes; see Ref. [10]). Therefore, we conclude
that the interactions O(1,2,3)

φ4D2 are not renormalised by O(1)
Bφ4D2 .

We have cross-checked most of our results (with perfect agreement in all cases) with the help of matchmakereft [14]. In fact,
for the calculation of eight-Higgs processes we have relied entirely on this latter tool. We neglect loops with insertions of operators
that can arise only at loop-level in weakly coupled UV completions of the SMEFT [15], as these effects are formally two-loop
corrections.
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Table 1 Structure of the bosonic–bosonic dimension-eight anomalous dimension matrix

The entries indicate the order in SM couplings of the leading contribution. Those in blue represent terms that deviate significantly from naive dimensional
analysis. The operators in grey can only arise at loop-level in weakly coupled UV completions of the SMEFT. The shaded cells indicate those of the latter
operators that are renormalised by interactions that can be generated at tree level

Fig. 2 Examples of diagrams
contributing to the renormalisation
of four-Higgs operators through
insertions of a four-Higgs terms
and b two-fermion terms. The
cross corresponds to a
dimension-eight vertex

3 Structure of the anomalous dimension matrix

The O(v4/�4) piece of the RGEs of both relevant and marginal bosonic interactions of the SMEFT, driven by operators that can
arise at tree level upon matching, are provided in an auxiliary file on https://github.com/SMEFT-Dimension8-RGEs. Here we limit
ourselves to discussing some generic aspects of this result.

The structure of the anomalous dimension matrix γ of dimension-eight bosonic operators is shown in Tables 1 and 2 for the
contributions resulting from the insertion of bosonic and fermionic dimension-eight terms respectively. The entries of the tables
correspond to the order in the SM couplings of the leading contribution of the renormalisation of the operators in the rows by
insertions of the dimension-eight operators present in the columns. For the latter operators, we considered only those which can
be generated at tree-level by weakly coupled UV theories [15] which can renormalise bosonic operators. Note that since we are
computing the RGEs at one-loop, at most two of the fields composing the inserted operator can be taken as internal particles, while
the remaining ones will be external. Thus, since tree-level generated bosonic interactions involve at least four Higgses [15], these
will not renormalise operators that only involve gauge bosons which are therefore not shown in the tables. This is illustrated in
Fig. 2a, where we see an example of an insertion of a four-Higgs term that contributes to processes with external Higgses.

Furthermore, for the fermionic contributions, since terms with more than two fermions do not renormalise bosonic operators
(because at most two particles can be taken internal in a given vertex), we considered only insertions of two-fermion operators in
Table 2. An example of this is shown in Fig. 2b, where the two fermions composing the dimension-eight insertion are inside the
loop.
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Table 2 Same as Table 1 but for the bosonic–fermionic anomalous dimension matrix

There are mixing terms of a size that deviate significantly from the naive dimensional analysis estimate, γi j/g ∼ 1; with g
representing (products of) SM couplings. In particular, we highlight in blue those that fulfil γi j/g � 10. The corresponding RGEs
read:

ċ(3)
φ4 � −g2

2(12c(1)
φ4 +

29

3
c(2)
φ4 + 14c(3)

φ4 ) − 56(c(4)
q2φ2D3 )α1,α2

yuα2,α3
(yu)∗α3,α1

+ · · · (9)

ċ(1)
Bφ4D2 � 12λc(1)

Bφ4D2 + 60g1(c(4)
q2φ2D3 )α1,α2

yu
α2,α3

(yu)∗
α3,α1

− 36(c(1)
q2Bφ2D

)α1,α2
yu

α2,α3
(yu)∗

α1,α3
+ · · · (10)

ċ(1)
Wφ4D2 � 44g2(c(4)

q2φ2D3 )α1,α2
yu

α2,α3
(yu)∗

α3,α1
+ 48(c(11)

q2WH2D
)α1,α2

yu
α2,α3

(yu)∗
α1,α3

+ · · · (11)

ċ(i)
B2φ4 � 48λc(i)

B2φ4 + · · · (12)

ċ(i)
W 2φ4 � 48λc(i)

W 2φ4 + · · · (13)

ċ( j)
W 2φ4 � 24λc( j)

W 2φ4 + · · · (14)

ċ(i)
WBφ4 � 40λc(i)

WBφ4 + · · · (15)

ċ(i)
G2φ4 � −14g2

3c
(i)
G2φ4 + · · · (16)

ċ(1)
φ6 � −157

16
g4

2c
(3)
φ4D4 + 20g1λc

(1)
Bφ4D2 + 40g2λc

(1)
Wφ4D2 + 68λc(1)

φ6

− 34g2
2(c(4)

q2φ2D3 )α1,α2
yu

α2,α3
(yu)∗

α3,α1
− 48(c(2)

q2φ4D
)α2,α1

yu
α1,α3

(yu)∗
α2,α3

− 30g2(c(11)
q2Wφ2D

)α1,α2
yu

α2,α3
(yu)∗

α1,α3
− 12(c(1)

quφ3D2 )α1,α2
yu

α4,α3
(yu)∗

α1,α3
(yu)∗

α4,α2
+ · · · (17)

ċφ8 � 184

3
λ3c(2)

φ4 − 12g1λ
2c(1)

Bφ4D2 − 16g2λ
2c(1)

Wφ4D2 + 12g2
1λc(1)

B2φ4

+ 36g2
2λc(1)

W 2φ4 + 12g1g2λc
(1)
WBφ4 + 48λ2c(2)

φ6D2 + 192λcφ8

+ 24λ(c(1)
u2φ2D3 + c(2)

u2φ2D3 )α1,α2
yu

α3,α4
yu

α5,α1
(yu)∗

α2,α3
(yu)∗

α4,α5

+ 24λ(c(1)
q2φ2D3 + c(2)

q2φ2D3 − c(3)
q2φ2D3 − c(4)

q2φ2D3 )α1,α2
yu

α2,α3
yu

α4,α5
(yu)∗

α3,α4
(yu)∗

α5,α1

− 12(cquφ5 )α1,α2
yu

α3,α4
(yu)∗

α1,α4
(yu)∗

α3,α2
− 12(cquφ5 )∗

α1,α2
yu

α1,α3
(yu)α4,α2

(yu)∗
α4,α3

+ 24λ(c(2)
q2φ4D

)α2,α1
yu

α1,α3
(yu)∗

α2,α3
+ 12g2λ(c(11)

q2Wφ2D
)α1,α2

yu
α2,α3

(yu)∗
α1,α3

− 12λ(c(5)
quφ3D2 )α1,α2

yu
α4,α3

(yu)∗
α1,α3

(yu)∗
α4,α2

+ · · · (18)

with i � 1, 2 and j � 3, 4; αi ’s are the flavour indices.
The shaded cells represent operators (those of the form X2φ2D2) that, despite arising only at the loop-level in weakly coupled

UV completions of the SMEFT, are renormalised by interactions that can be generated at tree level (those of the form φ4D4 and
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ψ2φ2D3). (This is in contrast with what occurs within the dimension-six bosonic sector of the SMEFT [16].) The RGEs of these
operators read:

ċ(1)
B2φ2D2 � 1

6
g2

1(2c(1)
φ4 + 3c(2)

φ4 + c(3)
φ4 ) − 8

9
g2

1

[
2c(1)

d2φ2D3 + 2c(2)
d2φ2D3 + 8(c(1)

u2φ2D3 + c(2)
u2φ2D3 )

+ 6c(1)
e2φ2D3 + 3c(1)

l2φ2D3 + 3c(2)
l2φ2D3 + c(1)

q2φ2D3 + c(2)
q2φ2D3

]

α1,α1
, (19)

ċ(2)
B2φ2D2 � − 1

24
g2

1(2c(1)
φ4 + 3c(2)

φ4 + c(3)
φ4 ) +

2

9
g2

1

[
2c(1)

d2φ2D3 + 2c(2)
d2φ2D3 + 8(c(1)

u2φ2D3 + c(2)
u2φ2D3 )

+ 6c(1)
e2φ2D3 + 3c(1)

l2φ2D3 + 3c(2)
l2φ2D3 + c(1)

q2φ2D3 + c(2)
q2φ2D3

]

α1,α1
, (20)

ċ(1)
W 2φ2D2 � 1

6
g2

2(2c(1)
φ4 + 3c(2)

φ4 + c(3)
φ4 ) − 8

3
g2

2

[
c(1)
l2φ2D3 + c(2)

l2φ2D3 + 3(c(1)
q2φ2D3 + c(2)

q2φ2D3 )
]

α1,α1
, (21)

ċ(2)
W 2φ2D2 � − 1

24
g2

2(2c(1)
φ4 + 3c(2)

φ4 + c(3)
φ4 ) +

2

3
g2

2

[
c(1)
l2φ2D3 + c(2)

l2φ2D3 + 3(c(1)
q2φ2D3 + c(2)

q2φ2D3 )
]

α1,α1
, (22)

ċ(5)
W 2φ2D2 � 2

3
g2

2

[
c(3)
l2φ2D3 + c(4)

l2φ2D3 + 3(c(3)
q2φ2D3 + c(4)

q2φ2D3 )
]

α1,α1
, (23)

ċ(1)
WBφ2D2 � − 1

12
g1g2(c(2)

φ4 + c(3)
φ4 ) − 4

3
g1g2

[
c(3)
l2φ2D3 + c(4)

l2φ2D3 − c(3)
q2φ2D3 − c(4)

q2φ2D3

]

α1,α1
, (24)

ċ(4)
WBφ2D2 � 1

6
g1g2(c(2)

φ4 + c(3)
φ4 ) +

8

3
g1g2

(
c(3)
l2φ2D3 + c(4)

l2φ2D3 − c(3)
q2φ2D3 − c(4)

q2φ2D3

)

α1,α1
, (25)

ċ(1)
G2φ2D2 � −8

3
g2

3

(
c(1)
u2φ2D3 + c(2)

u2φ2D3 + c(1)
d2φ2D3 + c(2)

d2φ2D3 + 2c(1)
q2φ2D3 + 2c(2)

q2φ2D3

)

α1,α1
, (26)

ċ(2)
G2φ2D2 � 2

3
g2

3

(
c(1)
u2φ2D3 + c(2)

u2φ2D3 + c(1)
d2φ2D3 + c(2)

d2φ2D3 + 2c(1)
q2φ2D3 + 2c(2)

q2φ2D3

)

α1,α1
. (27)

Essentially, all zeros in Tables 1 and 2 can be understood on the basis of the results in Ref. [15]. Within our field approach to
renormalisation relying on the Green’s basis of Ref. [10], the only zero that is not manifest off-shell is the divergence of O(1)

W 2Bφ2 .
Indeed, off-shell we have:

c(1)
W 2Bφ2 � g2

2

192π2ε
c(1)
Bφ4D2 +

g2
2

24π2ε

(
c(1)
l2Bφ2D

+ 3c(1)
q2Bφ2D

)

α1,α1

− g1g2
2

48π2ε

(
c(3)
l2φ2D3 + 3c(4)

l2φ2D3 − 5c(3)
q2φ2D3 + c(4)

q2φ2D3

)

α1,α1
, (28)

c(11)
WBφ2D2 � 0, (29)

c(13)
WBφ2D2 � − g2

192π2ε
c(1)
Bφ4D2 − g2

24π2ε

(
c(1)
l2Bφ2D

+ 3c(1)
q2Bφ2D

)

α1,α1

+
g1g2

48π2ε

(
c(3)
l2φ2D3 + 3c(4)

l2φ2D3 − 5c(3)
q2φ2D3 + c(4)

q2φ2D3

)

α1,α1
. (30)

However, the Wilson coefficient c(1)
W 2Bφ2 is shifted on-shell to

c(1)
W 2Bφ2 → c(1)

W 2Bφ2 +
g2

2
c(11)
WBφ2D2 + g2c

(13)
WBφ2D2 , (31)

thus making c(1)
W 2Bφ2 vanish on-shell. It should be also emphasised that some anomalous dimensions arise only from redundant

operators. For example, the physical interactions φ4D4 do not renormalise directly the operator Oφ8 , because divergences of the
latter are momentumless, whereas loops of the former involve always external momenta.

In Tables 3 and 4 we depict the same information as in Tables 1 and 2 but for the renormalisation of the bosonic SM Lagrangian
terms and dimension-six interactions. In this case, the anomalous dimensions that differ substantially from naive power counting
read:

ċφ� � 24λμ2c(3)
φ4 +

21

2
g2μ

2c(1)
Wφ4D2 + 16μ2c(2)

φ6 − 16μ2
[
(c(1)

u2φ2D3 + c(2)
u2φ2D3 )α1,α2

yu
α3,α1

(yu)∗
α2,α3

+ (c(1)
q2φ2D3 + c(2)

q2φ2D3 − c(3)
q2φ2D3 − c(4)

q2φ2D3 )α1,α2
yu

α2,α3
(yu)∗

α3,α1

]
+ · · · , (32)

ċφ � 144λ2μ2c(3)
φ4 + 14g1λμ2c(1)

Bφ4D2 + 40g2λμ2c(1)
Wφ4D2 − 18g2

2μ2c(1)
W 2φ4 + 52λμ2c(1)

φ6 + 40μ2c8
φ

− 72λμ2
[
(c(3)

q2φ2D3 + c(4)
q2φ2D3 )α1,α2

yu
α2,α3

(yu)∗
α3,α1

]
− 12μ2(c(2)

q2φ4D
)α2,α1

yu
α1,α3

(yu)∗
α2,α3

+ · · · , (33)

λ̇ � −94λμ4c(3)
φ4 − 16g2μ

4c(1)
Wφ4D2 − 28μ4

[
(c(3)

q2φ2D3 + c(4)
q2φ2D3 )α1,α2

yu
α2,α3

(yu)∗
α3,α1

]
+ · · · . (34)
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Table 3 Same as Table 1 but for the renormalisation of the bosonic interactions of dimensions two, four and six

Table 4 Same as Table 2 but for the renormalisation of the bosonic interactions of dimensions two, four and six

Likewise, the loop operators that are renormalised by (dimension-eight) tree level terms have the following RGEs:

ċφB � μ2
[

1

4
g2

1

(
2c(1)

φ4 − 3c(2)
φ4 + c(3)

φ4

)
− 2g1c

(1)
Bφ4D2 + 12c(1)

B2φ4

]
, (35)

ċφ B̃ � −2μ2
(
g1c

(1)
Bφ4D2 − 6c(1)

B2φ4

)
, (36)

ċφW � μ2

[
−g2

2

4

(
c(2)
φ4 − c(3)

φ4

)
− 2g2c

(1)
Wφ4D2 + 12c(1)

W 2φ4 + 4c(3)
W 2φ4

]
, (37)

ċφW̃ � μ2
[
−2g2c

(2)
Wφ4D2 + 12c(2)

W 2φ4 + 4c(4)
W 2φ4

]
, (38)

ċφWB � μ2
[g1g2

2

(
c(1)
φ4 − 2c(2)

φ4 + c(3)
φ4

)
− g2c

(1)
Bφ4D2 − g1c

(1)
Wφ4D2 + 8c(1)

WBφ4

]
, (39)

ċφW̃ B � −μ2
[
g2c

(2)
Bφ4D2 + g1c

(2)
Wφ4D2 − 8c(2)

WBφ4

]
, (40)

ċφG � 12μ2c(1)
G2φ4 , (41)

ċφG̃ � 12μ2c(2)
G2φ4 . (42)

Notice that none of the dimension-eight fermionic interactions considered here renormalise lower-dimensional bosonic terms.

4 Positivity bounds

Positivity bounds are restrictions on the form of the S-matrix derived from unitarity, analyticity and crossing. The best known
example is the positivity of the forward scattering amplitude A(s, t � 0) in 2 → 2 processes, given by:

d2

ds2 A(s, t � 0)

∣∣∣∣
s�0

≥ 0. (43)

If A(s, t � 0) is analytical in s � 0, then it admits an expansion in a neighbourhood of the origin reading A(s, t � 0) �
a0 + a1s + a2s2 + .... Hence, the equation above implies a2 ≥ 0.
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The Wilson coefficients that enter in a2 are those of dimension-eight (or pairs of dimension-six ones, etc.), from where it follows
that certain combinations of dimension-eight terms are forced to be non-negative. For example, by analysing the process φφ → φφ,
Ref. [17] finds that:

c(2)
φ4 ≥ 0, (44)

c(1)
φ4 + c(2)

φ4 ≥ 0, (45)

c(1)
φ4 + c(2)

φ4 + c(3)
φ4 ≥ 0. (46)

The problem arises when the amplitude is not regular around s � 0. This occurs, for example, when the leading contribution is
due to loops involving massless particles, in which case there are branch cuts that extend all the way to the origin. In principle, the
reasoning leading to Eq. (43) can be replicated upon giving a small mass m to the massless states (hence regularising the singularity
in the origin), which can be later taken to zero [4]. However, this solution does not always imply that the conclusions derived in the
absence of light loops remain valid in their presence.

In particular, for φ4D4 operators, it was shown recently in Ref. [18] that the corresponding amplitude in the limit m → 0 is
actually dominated by the running of lower-dimensional operators (φ4 and φ4D2). It was explicitly shown that, in general, even if
the φ4D4 operators fulfil the inequalities in Eq. (44) at some heavy scale � at which they are generated at tree-level, the positivity
bounds are violated at scales μ̃ < � upon evolving with the RGEs triggered by λ, g1 and g2. (Not so by gravity [19].)

Positivity bounds exist also for the operators X2φ2D2. They were obtained in Ref. [20] upon inspection of the amplitude
V1V2 → V1V2, with Vi � W±, Z , γ , in the EW broken phase. The relevant operators in Ref. [20] are dubbedOM,i , for i � 1, ..., 5, 7.
The explicit form of those interactions (first derived in Ref. [21]) can be found also in that paper; here we simply specify how the
corresponding Wilson coefficients (which are there called fM,i ) are related to the Wilson coefficients of the operators in our basis:

fM,0 � − 2

g2
2

c(2)
W 2φ2D2 , fM,1 � 2

g2
2

(c(1)
W 2φ2D2 + c(4)

W 2φ2D2 ), fM,2 � − 4

g2
1

c(2)
B2φ2D2 ,

fM,3 � 4

g2
1

c(1)
B2φ2D2 , fM,4 � − 4

g1g2
c(1)
WBφ2D2 , fM,5 � − 8

g1g2
c(4)
WBφ2D2 , fM,7 � 4

g2
2

c(4)
W 2φ2D2 . (47)

The equations (3.93) and (3.99) in Ref. [20] constrain certain combinations of fM,i . Translated to our basis, these relations read:

g2
1c

(1)
B2φ2D2 + g2

2c
(1)
W 2φ2D2 + 2g1g2c

(4)
WBφ2D2 ≤ 0, (48)

g2
1c

(1)
B2φ2D2 + g2

2c
(1)
W 2φ2D2 − 2g1g2c

(4)
WBφ2D2 ≤ 0, (49)

c(1)
W 2φ2D2 ≤ 0, (50)

g2
1c

(1)
W 2φ2D2 + 2g1g2c

(4)
WBφ2D2 + g2

2c
(1)
B2φ2D2 ≤ 0, (51)

g2
1c

(1)
W 2φ2D2 − 2g1g2c

(4)
WBφ2D2 + g2

2c
(1)
B2φ2D2 ≤ 0. (52)

One can also derive these constraints from the amplitudes φV → φV in the unbroken phase. For example, let us consider the process
ϕ2Z → ϕ2Z , with ϕ2 being one of the real degrees of freedom of the Higgs doublet, φ � 1√

2
(ϕ1 + iϕ2, ϕ3 + ϕ4)T . We have:

−(g2
1 + g2

2)A(s) �
[
g2

2c
(1)
W 2φ2D2 + 2g1g2c

(4)
WBφ2D2 + g2

1c
(1)
B2φ2D2

]

× [
ε∗

4 · p2 ε2 · (p1 + p3) s + ε∗
4 · (p1 + p3) ε2 · p4 s − 2ε∗

2 · ε4 s
2]. (53)

In the forward limit, p2 ↔ p4, and so ε∗
4 · p2 and ε2 · p4 vanish because the polarisations are transverse (the Z is massless in the

unbroken phase). Moreover, taking linearly polarised Z bosons, we have ε2 � ε4 � (0, a, b, 0), and hence ε∗
2 · ε4 � −(a2 + b2). As

a result, A depends only on s despite involving particles with spin, as described in Ref. [22]; more concretely:

A(s) � −2(a2 + b2)

g2
1 + g2

2

[
g2

2c
(1)
W 2φ2D2 + 2g1g2c

(4)
WBφ2D2 + g2

1c
(1)
B2φ2D2

]
s2, (54)

which, following Eq. (43), implies:

g2
2c

(1)
W 2φ2D2 + 2g1g2c

(4)
WBφ2D2 + g2

1c
(1)
B2φ2D2 ≤ 0. (55)

This is nothing but Eq. (48).
The benefit of working in the unbroken phase, though, is that analysing which lower-dimensional operators can dominate the

amplitude φV → φV at low s (namely proportional to log s2/�) is much easier. In particular, and contrary to the φ4D4 instance, no
relevant dimension-six operators are renormalised by tree-level interactions. Thus, to leading order in g2, we have that for s → 0:

A(s) ∼ ċX2φ2D2
s2

�4 log
s

�2 . (56)
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(The only relevant lower-dimensional couplings that get renormalised are the gauge couplings, but their contribution is proportional
to the beta function of g2, namely ∼ g3.) That is, because the only contribution is that of the running of X2φ2D2, the RGEs of these
operators must preserve positivity. Let us ascertain this hypothesis by explicit calculation.

The operators X2φ2D2 can not arise at tree-level in weakly coupled UV completions of the SMEFT. So, their values at energies
μ̃ 
 � will be dominated by their running induced by tree-level operators, namely by φ4D4 and ψ2φ2D3. Using the RGEs in
Eq. (19) to leading-logarithm (note that the running of the SM gauge couplings can be ignored precisely because the X2φ2D2

operators vanish at tree-level at μ̃ � �), a sufficient condition for all inequalities above to hold is:

2c(1)
φ4 + 3c(2)

φ4 + c(3)
φ4 ≥ 0, (57)

c(1)
φ4 + 2c(2)

φ4 + c(3)
φ4 ≥ 0, (58)

c(1)
φ4 + c(2)

φ4 ≥ 0, (59)

[
c(1)
ψ2
Rφ2D3 + c(2)

ψ2
Rφ2D3

]

α1,α1

≤ 0, (60)
[
c(1)
ψ2
Lφ2D3 + c(2)

ψ2
Lφ2D3 + c(3)

ψ2
Lφ2D3 + c(4)

ψ2
Lφ2D3

]

α1,α1

≤ 0, (61)
[
c(1)
ψ2
Lφ2D3 + c(2)

ψ2
Lφ2D3 − c(3)

ψ2
Lφ2D3 − c(4)

ψ2
Lφ2D3

]

α1,α1

≤ 0 ; (62)

for ψL � l, q and ψR � e, u, d . The Wilson coefficients above must be thought as evaluated in �. For example, Eq. (50) reads
simply:

c(1)
W 2φ2D2 (μ̃) � c(1)

W 2φ2D2 (�) − 1

16π2 ċ
(1)
W 2φ2D2 (�) log

�

μ̃
< 0 (63)

⇒ 1

6
g2

2

[
2c(1)

φ4 + 3c(2)
φ4 + c(3)

φ4D4

− 16

3

(
c(1)
l2φ2D3 + c(2)

l2φ2D3 + 3c(1)
q2φ2D3 + 3c(2)

q2φ2D3

)

α1,α1

]
log

�

μ̃
> 0, (64)

and it is clear that the g2
2 and the logarithm are positive.

The relations in Eqs. (57)–(59) are always fulfilled because, at tree-level, the four-Higgs operators satisfy the conditions in
Eq. (44). The remaining inequalities, Eqs. (60)–(62) are essentially equivalent to those quoted in Eq. (12) of Ref. [23]. We have
nevertheless checked their validity explicitly by studying the forward scattering amplitude for φψ → φψ . Thus, we have proven
that the positivity constraints on the operators X2φ2D2, unlike those for φ4D4 [18], remain valid at sufficiently small scales within
one-loop accuracy.

5 Conclusions

We have completed the one-loop renormalisation of bosonic operators in the (lepton-number conserving) SMEFT to order v4/�4.
This includes the running of operators triggered by pairs of dimension-six interactions, first computed in Ref. [5], as well as the
renormalisation due to dimension-eight terms, which has been our focus for calculation within this work. We have relied heavily on
the basis of Green’s functions and the reduction of redundant operators onto physical ones derived in Ref. [10]. The current picture
of one-loop renormalisation within the SMEFT is summarised in Table 5.

Without entering into phenomenological considerations, there are several important consequences that can be derived from our
results. To start with, we have found a number of anomalous dimensions that divert significantly from naive power counting. For
example, ċ(1)

φ6 � − 157
16 g4

2c
(3)
φ4D4 + 68λc(1)

φ6 + · · ·; the factors of 157/16 and 68 compensate partially the loop suppression. On a different
note, there are tree-level dimension-eight interactions that mix into loop-level dimension-eight operators (this was first noticed in
Ref. [15]) as well as into loop-level dimension-six terms (that we have unravelled here for the first time); an example of the latter
is the renormalisation (proportional to μ2) of X2φ2 interactions by φ4D4 operators. Finally, we have found the remarkable result
that, unlike for φ4D4 [18], positivity bounds on X2φ2D2 operators, first derived in Ref. [20], hold at all sufficiently small scales at
one-loop accuracy. This strengthens the idea that the restrictions in Eqs. (48)–(52) should be used as Bayesian priors in experimental
fits aiming at measuring the values of the Wilson coefficients of quartic-gauge coupling operators, in line with Ref. [24].

Several future directions remain to be explored. First, one could compute the running driven by LNV and baryon-number
violating (BNV) interactions. Although this effect is most probably negligible, due to the in principle huge scale of LNV and BNV,
the possibility that these symmetries are broken at the TeV scale is not yet discarded; in which case the neutrino masses and the
absence of proton decay would reflect strong GIM-like cancellations between different LNV and BNV operators [25].
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Table 5 State of the art of the SMEFT renormalisation

d5 d2
5 d6 d3

5 d5 × d6 d7 d4
5 d2

5 × d6 d2
6 d5 × d7 d8

d≤4 (bosonic) ✓ [26] ✓ [6] This work

d≤4 (fermionic) ✓ [26] × ×
d5 ✓ [27–29] ✓ [30] ✓ [30]

d6 (bosonic) ✓ [31] ✓ [26, 32, 33] × ✓ [6] × This work

d6 (fermionic) ✓ [31] ✓ [26, 32–34] × × × ×
d7 ✓ [30] ✓ [30] ✓ [35, 36]

d8 (bosonic) × × ✓ [6] × This work

d8 (fermionic) × × × × ✓ [1]

The rows represent the operators (characterised by their dimension d) being renormalised, while the columns indicate the operators entering the loops. Blank
entries vanish; a tick ✓ represents that the complete contribution is known; the ✓ implies that only (but substantial) partial results have been already obtained;
the × indicates that nothing, or very little, is known. The contribution made in this paper is marked by italic

One more step further requires renormalising the fermionic operators of the SMEFT. Our current work paves the way to this
endeavour, since, in the field-theory approach to running, the divergences of fermionic interactions receive contributions from
redundant bosonic operators, all of which we have computed here. As a third possible avenue, one could consider quantifying the
impact of dimension-eight interactions, with and without quantum corrections, for constraining concrete models of new physics.
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Appendix: Comparison with Ref. [6]

The O(g2, λ) contributions in the dimension-eight anomalous dimension matrix computed in this work (see Table 1) were previously
calculated in Ref. [6], using a completely different approach based on on-shell amplitude methods. Here we check the consistency
between the two results.

For simplicity, let us only focus on the sub-matrix of the RGEs defined by the operators φ8, φ6D2, φ4D4,
X2φ4, Xφ4D2. In the notation of Ref. [6], these operators are expanded by the minimal amplitudes Ai , i �
1, 19, 18, 44, 45, 46, 11, 10, 8, 6, 9, 7, 5, 4, 3, 2, 43, 41, 42, 40, 25, 24. The rotation matrix that moves the corresponding Wilson
coefficients in our basis to the Wilson coefficients in Ref. [6] reads:

P �

⎛

⎜⎜⎜⎜⎝

1
Pφ6D2

Pφ4D4

PX2φ4

PXφ4D2

⎞

⎟⎟⎟⎟⎠
, (65)

with

Pφ6D2 �
(−1 2

−1 1

)
, Pφ4D2 �

⎛

⎝
1 1 0
1 0 1
2 0 0

⎞

⎠, (66)
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PX2φ4 �

⎛

⎜⎜⎜⎜⎝

Q
Q Q

4Q
Q

Q

⎞

⎟⎟⎟⎟⎠
, PXφ4D2 � 1

2

⎛

⎝
Q Q

−Q Q
2Q

⎞

⎠, (67)

whereas

Q �
(

1 − i
1 i

)
. (68)

If, and only if, our computations are consistent with those in Ref. [6], our RGE matrix γ truncated to order O(g2, λ) is related to
theirs, γ̃ , through:

P−1γ̃ P � γ. (69)

One can indeed check, by direct calculation, that Eq. (69) holds.
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