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Abstract Considering the factor of artificial intervention in biological control, a delayed fractional eco-epidemiological system
with an extended feedback controller is proposed. By using the digestion delay as bifurcation parameter, the stability and Hopf
bifurcation are investigated, and the branching conditions are given. The system undergoes Hopf bifurcation, when the parameter
τ passes through the critical value. In addition, it can be pointed out that the negative feedback gain and the feedback delay could
affect the bifurcation critical value of the system. Therefore, the Hopf bifurcation can also be induced by taking the feedback delay
as a bifurcation parameter. Finally, by plotting the solution curve of the system, the significance of the controller to the stability of
the eco-epidemiological system is verified.

1 Introduction

Biological populations thrive in nature, and various organisms are inevitably invaded by various diseases during their lives[1–3].
The COVID-19 pandemic, which started in 2020, still threatens the lives and health of people all over the world. In April 2022, two
poultry farms in Hokkaido, Japan, had a highly pathogenic avian influenza outbreak. To prevent the spread of the epidemic, the local
government decided to cull more than 500,000 chickens and hundreds of emus. For thousands of years, mankind’s struggle against
various infectious diseases has never been interrupted. It was not until 1674, Antony van Leeuwenhoek observed the existence of
microorganisms with the help of a microscope, which the foundation for human beings to truly understand diseases was laid. In
1840, Jacob Henle used bacterial theory for the first time to elucidate the pathogenesis of diseases. Later, through the work of Louis
Pasteur and others, human beings realized that the origin of disease mainly comes from microorganisms, which was a key step
toward the conquest of diseases.

In 1927, Kermack et al.[4] proposed the famous Kermack–McKendrick compartment model and successfully studied the law of
disease transmission by using differential equation theory. Since then, mathematical models had become an important tool in the
research of infectious diseases. In 1986, Anderson and May[5] first combined the infectious disease system and the Lotka–Volterra
system to study the invasion, persistence, and spread of infectious diseases in plant and animal communities. Zhou et al.[6] constructed
a time-delayed eco-epidemiological model of prey-infected diseases, and studied the stability of the positive equilibria and the
existence conditions of the Hopf bifurcation. Saifuddin et al.[7] established a kind of eco-epidemiological model with predators
having weak Allee effect and prey populations are infected. They researched the Hopf bifurcation near the equilibrium point and
the chaotic dynamic behavior caused by disease. Taking S(t) represents the density of susceptible prey populations, I(t) to be the
density of disease-infected prey populations, P(t) to denote the density of predator populations, Moustafa et al.[8] presented the
following ecological infectious disease model of prey infection

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S
′
(t) � r S(1 − S

k ) − βSI
1+ηS ,

I
′
(t) � βSI

1+ηS − ξ I − ϕ I P,

P
′
(t) � α I P − δP.

(1)

Here, βSI
1+ηS is the incidence of nonlinear saturation, and the biological significance of the coefficients in the model is shown in Table

1. Considering the prey is easy to be caught after being infected, model (1) assumed that predators only prey on the diseased prey.
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Table 1 Biological significance of
symbols

Symbol Biological significance

r The intrinsic growth rate of prey population

k Environmental capacity of prey populations
β Contact rate factor
η Half saturation constant of infection
ξ Mortality of infected prey
ϕ Predator attack rate on infected prey
α Conversion rate of predators on infected prey
δ Predator mortality

Fractional calculus is an extension of classical calculus theory[9–11]. Since fractional-order system has the property of time
memory, establishing complex system using fractional calculus theory can greatly improve the ability of identification, design, and
control of dynamic system. According to the needs of modeling, long memory system or short memory system can be used[12–18].
Based on the short memory fractional differential equations, Wu et al.[19] proposed a short memory fractional-order model, and
derived the global stability conditions of variable-order neural networks. Because biological populations have memory and genetic
characteristics, Kumar et al.[20] used long memory fractional differential equations to establish an eco-epidemiological model, and
analyzed the impact of dynamically changing spread and attack rates on system dynamics. Almeida et al.[21] adjusted the order of
the fractional derivative of the model to fit the real disease spread data so as to better predict the development of the disease. Mondal
et al.[22] deduced that the solution of the fractional-order system converges to several equilibrium points at a slower rate as the order
of the differential equation decreases, but the qualitative properties of the solution are the same as those of the integer-order system.
Chinnathambi et al.[23] demonstrated that fractional order could enhance the stability of the system and suppress the appearance
of oscillations. It should be noted that in most of the previous studies, the biological systems have the same fractional order[8, 24,
25]. In fact, different biological populations have their own unique characteristics[30]. In order to better meet the actual biological
background, we construct a fractional-order system with different orders for each variable on the basis of model (1).

To prevent the serious damage or even extinction of animal and plant population caused by infectious diseases, it is particularly
important to reasonably intervene and control the ecological epidemiological system[26, 27]. For the treatment of leukemia, Islam
et al.[28] designed an adaptive terminal and supertorsional sliding mode controller, and verified the stability of the system using
Lyapunov’s stability theory. For a nonlinear four-state ODE malignant tumor model, Qaiser et al.[29] designed a fuzzy controller
and two kinds of nonlinear controllers: synergetic and state feedback controllers for chemotherapeutic drug control. An extended
feedback controller was introduced into the ecological epidemiological model in[30], Wang et al. confirmed that changing the
feedback control time delay could affect the stability of the model, thus effectively restrained the occurrence of bifurcation. It should
be pointed out that there are few studies on bifurcation control for ecological epidemiological model with time delays. We couple
the feedback controller Ψ (t) � μ[I (t) − I (t − υ)] (where μ denotes the feedback gain and υ represents the feedback control time
delay) into the system (1), and consider the fractional derivatives of different orders to obtain the following delay fractional-order
ecological epidemiological model,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C
t0 D

θ1
t S(t) � r S(1 − S

k ) − βSI
1+ηS ,

C
t0 D

θ2
t I (t) � βSI

1+ηS − ξ I − ϕ I P + μ[I (t) − I (t − υ)],

C
t0 D

θ3
t P(t) � α I (t − τ )P(t − τ ) − δP,

(2)

where the initial condition is S(t) � ψ1(t) ≥ 0, I (t) � ψ2(t) ≥ 0, P(t) � ψ3(t) ≥ 0, t ∈ [t0 − max(τ, υ), t0]. Among them,
θ1, θ2, θ3 are the orders of the fractional derivative of the system variable, and 0 < θ1, θ2, θ3 ≤ 1, Ct0 D

θi
t is the fractional derivative

in the sense of Caputo with initial time t0 > 0. τ represents the digestion delay of the predator. The biological significance of other
parameters is the same as in Table 1.

This paper mainly investigates the stability of the positive equilibrium of the system (2) and the conditions for the existence
of the Hopf bifurcation. The effect of the controller on the stability of the ecological epidemiology model is analyzed. In order to
verify the correctness of the theoretical analysis, the L1 scheme (Oldham and Spanier[31]) is used for numerical simulation. The L1
formula is established by a piecewise linear interpolation approximation for the integrand function on each small interval[32–34].
At the same time, the modified Adams–Bashforth–Moulton predictor–corrector scheme is used to solve the numerical calculation
problems of fractional-order delay differential equations [35, 36].

The structure of this article is as follows: Related definitions and lemma are listed in Sect. 2. In Sect. 3, the existence condition
of the internal equilibrium point is given. The stability of the system with and without controller is discussed by regarding digestion
delay as parameter, and the criteria of Hopf bifurcation are given. In particular, the Hopf bifurcation caused by feedback delay is
analyzed. Some numerical simulations and analysis are presented in Sect. 4. Finally, a discussion is presented in Sect. 5.
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2 Preliminaries

Definition 1 [9, 11] Let f (t) ∈ L1([t0, T ];R). The Riemann–Liouville integral of order θ > 0 is defined by

t0 I
θ
t f (t) � 1


(θ )

∫ t

t0
(t − s)θ−1 f (s)ds, t ∈ [t0, T ]

where 
(θ ) � ∫ ∞
0 tθ−1e−t dt .

Definition 2 [9, 11] If f (t) is differentiable, then the Caputo fractional derivative of order θ ∈ (0, 1) for f (t) is defined as

C
t0 D

θ
t f (t) � 1


(1 − θ )

∫ t

t0
(t − s)−θ f ′(s)ds, 0 < θ < 1.

Lemma 1 [10] Consider the under n-dimensional linear fractional-order time-delay system:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

C
t0 D

θ1
t x1(t) � b11x1(t − τ11) + b12x2(t − τ12) + · · · + b1nxn(t − τ1n),

C
t0 D

θ2
t x2(t) � b21x1(t − τ21) + b22x2(t − τ22) + · · · + b2nxn(t − τ2n),

...
C
t0 D

θn
t xn(t) � bn1x1(t − τn1) + bn2x2(t − τn2) + · · · + bnnxn(t − τnn),

(3)

where the initial conditions xi (t) � ξi (t) are given for t ∈ [t0 − τmax , t0], τmax � max
1≤i, j≤n

τi j and θi ∈ (0, 1)(i � 1, 2, ...n). It is

defined as

�(s) �

⎡

⎢
⎢
⎢
⎣

sθ1 − b11e−sτ11 − b12e−sτ12 · · · − b1ne−sτ1n

−b21e−sτ21 sθ2 − b22e−sτ22 · · · − b2ne−sτ2n

...
...

. . .
...

−bn1e−sτn1 − bn2e−sτn2 · · · sθn − bnne−sτnn

⎤

⎥
⎥
⎥
⎦

.

If all roots of the det(�(s)) � 0 have negative real parts, then the zero solution of system (3) is Lyapunov globally asymptotically
stable.

Corollary 1 [10] In the case of 0 < θ � θ1 � θ2 � · · · � θn < 1, τi j � 0, if all the roots of the equation det(sθ I − (bi j )n×n) � 0
satisfy |arg(sθ )|> θπ

2 , then the zero solution of system (3) is Lyapunov globally asymptotically stable.

Corollary 2 [10] Assume that all θi are rational numbers between 0 and 1, τi j � 0, m is the smallest of the common multiples of

the denominators of θ1, θ2, · · · , θn . Denote λ by s
1
m , if all the roots of the equation det(diag(λmθ1 , λmθ2 , · · · , λmθn ) − (bi j )n×n) � 0

satisfy |arg(λi )|> π
2m , i � 1, 2, · · · , k, k � m(θ1 + θ2 + · · · + θn), then the zero solution of system (3) is Lyapunov globally

asymptotically stable.

3 Main results

The main objective of this paper is to investigate the existence of periodic solutions by applying the Hopf bifurcation theory. Then,
we discuss how the feedback controller affects the bifurcation of the system. Throughout the paper, we make an assumption

[H1]: βδ
αr < 1,

βS∗
1+ηS∗ > ξ , where S∗ is the positive root of the equation ηS2 + (1 − kη)S + k( βδ

αr − 1) � 0. Under [H1], system

(2) admits a positive equilibrium E∗ � (S∗, I ∗, P∗), where I ∗ � δ
α

, P∗ � 1
ϕ

( βS∗
1+ηS∗ − ξ ).

By applying the transformation of variables, let Q1(t) � S(t) − S∗, Q2(t) � I (t) − I ∗, Q3(t) � P(t) − P∗. Accordingly, the
following system can be obtained from model (2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

C
t0 D

θ1
t Q1(t) � r (Q1(t) + S∗)(1 − Q1(t)+S∗

k ) − β(Q1(t)+S∗)(Q2(t)+I ∗)
1+η(Q1(t)+S∗) ,

C
t0 D

θ2
t Q2(t) � β(Q1(t)+S∗)(Q2(t)+I ∗)

1+η(Q1(t)+S∗) − ϕ(Q2(t) + I ∗)(Q3(t) + P∗)

− ξ (Q2(t) + I ∗) + μ[Q2(t) − Q2(t − υ)],

C
t0 D

θ3
t Q3(t) � α(Q2(t − τ ) + I ∗)(Q3(t − τ ) + P∗) − δ(Q3(t) + P∗).

(4)

According to system (4), the corresponding linear system can be expressed as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C
t0 D

θ1
t Q1(t) � (r − 2r S∗

k − β I ∗
(1+ηS∗)2 )Q1(t) − βS∗

1+ηS∗ Q2(t),

C
t0 D

θ2
t Q2(t) � β I ∗

(1+ηS∗)2 Q1(t) + μQ2(t) − μQ2(t − υ) − ϕ I ∗Q3(t),

C
t0 D

θ3
t Q3(t) � αP∗Q2(t − τ ) − δQ3(t) + α I ∗Q3(t − τ ).

(5)

123



  934 Page 4 of 14 Eur. Phys. J. Plus         (2022) 137:934 

Consequently, the characteristic matrix of system (5) is

�(s) �
⎡

⎣
sθ1 − a11 − a12 0

−a21 sθ2 − μ + μe−sυ − a22

0 − a31e−sτ sθ3 − a32 − a33e−sτ

⎤

⎦,

where a11 � r − 2r S∗
k − β I ∗

(1+ηS∗)2 , a12 � − βS∗
1+ηS∗ , a21 � β I ∗

(1+ηS∗)2 , a22 � −ϕ I ∗, a31 � αP∗, a32 � −δ, a33 � α I ∗.

3.1 Influence of time delay on bifurcation dynamics of the uncontrolled system

Let’s consider the Hopf bifurcation conditions of the uncontrolled system with regarding time delay as a bifurcation parameter.
When υ � 0 or μ � 0, system (2) is a fractional system with no controller, the system is as follows,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C
t0 D

θ1
t S(t) � r S(1 − S

k ) − βSI
1+ηS ,

C
t0 D

θ2
t I (t) � βSI

1+ηS − ξ I − ϕ I P,

C
t0 D

θ3
t P(t) � α I (t − τ )P(t − τ ) − δP.

(6)

The characteristic Eq. of (6) is

W1(s) + W2(s)e−sτ � 0, (7)

where

W1(s) � sθ1+θ2+θ3 − a32s
θ1+θ2 − a11s

θ2+θ3 + a11a32s
θ2 − a12a21s

θ3 + a12a21a32,

W2(s) � −a33s
θ1+θ2 − a22a31s

θ1 + a11a33s
θ2 + a11a22a31 + a12a21a33.

Firstly, we consider the stability of equilibrium point E∗ in the case of τ � 0 in system (6).
If θ1 � θ2 � θ3 � θ , we have the following equality

σ 3 + μ1σ
2 + μ2σ + μ3 � 0, (8)

where σ � sθ , μ1 � S∗( rk − βδη

α(1+ηS∗)2 ), μ2 � δβ2S∗
α(1+ηS∗)3 + ϕδP∗, μ3 � ϕδS∗P∗( rk − βδη

α(1+ηS∗)2 ). Under hypothesis [H1], we get
μ1 > 0, μ1μ2 − μ3 > 0, μ3 > 0. By the Routh–Hurwitz criterion, we can find all the roots of Eq.(8) have negative real parts. That
is |arg(σ )|� |arg(sθ )|> θπ

2 . From Corollary 1, one can deduce E∗ of system (6) is locally asymptotically stable.
If θi , i � 1, 2, 3 are rational numbers between 0 and 1, m is the smallest of the common multiples of the denominators of θi .

Denote λ by s
1
m , Eq.(7) can be written as λm(θ1+θ2+θ3) − a11λ

m(θ2+θ3) − a22a31λ
mθ1 − a12a21λ

mθ3 + a11a22a31 � 0. If hypothesis
[H2]: |arg(λi )|> π

2m , i � 1, 2, · · · , k, k � m(θ1 + θ2 + θ3) is satisfied, then E∗ of system (6) is locally asymptotically stable by
Corollary 2.

Based on the above discussion, Theorem 1 can be derived.

Theorem 1 Suppose the conditions [H1] and [H2] hold, then the positive equilibria E∗ � (S∗, I ∗, P∗) of the fractional-order system
(6) is locally asymptotically stable if τ � 0.

Next, we consider the stability of equilibrium point E∗ in the case of τ > 0 in system (6). Let s � r1(cos π
2 + i sin π

2 )(r1 > 0)
be a purely imaginary root of (7), so it follows from (7) that

{
Wr

2 cos r1τ + Wi
2 sin r1τ � −Wr

1 ,

Wi
2 cos r1τ − Wr

2 sin r1τ � −Wi
1,

(9)

where
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Wr
1 � r θ1+θ2+θ3

1 cos
θ1 + θ2 + θ3

2
π − a32r

θ1+θ2
1 cos

θ1 + θ2

2
π − a11r

θ2+θ3
1 cos

θ2 + θ3

2
π

+ a11a32r
θ2
1 cos

θ2

2
π − a12a21r

θ3
1 cos

θ3

2
π + a12a21a32,

Wi
1 � r θ1+θ2+θ3

1 sin
θ1 + θ2 + θ3

2
π − a32r

θ1+θ2
1 sin

θ1 + θ2

2
π − a11r

θ2+θ3
1 sin

θ2 + θ3

2
π

+ a11a32r
θ2
1 sin

θ2

2
π − a12a21r

θ3
1 sin

θ3

2
π,

Wr
2 � −a33r

θ1+θ2
1 cos

θ1 + θ2

2
π − a22a31r

θ1
1 cos

θ1

2
π + a11a33r

θ2
1 cos

θ2

2
π

+ a11a22a31 + a12a21a33,

Wi
2 � −a33r

θ1+θ2
1 sin

θ1 + θ2

2
π − a22a31r

θ1
1 sin

θ1

2
π + a11a33r

θ2
1 sin

θ2

2
π.

As far as Eq. (9), one yields
⎧
⎪⎨

⎪⎩

cos r1τ � −κ1(r1)

κ3(r1)
,

sin r1τ � −κ2(r1)

κ3(r1)
,

(10)

where κ1(r1) � Wr
1 W

r
2 + Wi

1W
i
2, κ2(r1) � Wr

1 W
i
2 − Wr

2 W
i
1, κ3(r1) � (Wr

2 )2 + (Wi
2)2. It is obtained from Eq. (10) that

κ2
1 (r1) + κ2

2 (r1) − κ2
3 (r1) � 0. (11)

Suppose Eq. (11) has a positive real root r10, we get τ k � 1
r10

[
arccos(− κ1(r10)

κ3(r10) ) + 2kπ
]
, k � 0, 1, 2.... At the same time, we

apply the notation τ0 � min
{
τ k, k � 0, 1, 2...

}
. Then, in order to better search for the criterion of the occurrence for bifurcation,

differentiating Eq.(7) with respect to τ , we have

W
′
1(s)

ds

dτ
+ W

′
2(s)

ds

dτ
e−sτ + W2(s)e−sτ (−τ

ds

dτ
− s) � 0.

So we can get

ds

dτ
� ε(s)

ζ (s)
, (12)

where ε(s) � sW2(s)e−sτ , ζ (s) � W
′
1(s)+

[
W

′
2(s) − τW2(s)

]
e−sτ . Define ε1, ε2 be the real and imaginary parts of ε(s) individually.

ζ1, ζ2 be the real and imaginary parts of ζ (s) individually. Based on algebraic analysis, we can obtain from Eq.(12) that

Re

[
ds

dτ

]∣
∣
∣
(r1�r10,τ�τ0)

� ε1ζ1 + ε2ζ2

ζ 2
1 + ζ 2

2

, (13)

where

ε1 � r10

(
Wr

2 sin r10τ0 − Wi
2 cos r10τ0

)
,

ε2 � r10

(
Wr

2 cos r10τ0 + Wi
2 sin r10τ0

)
,

ζ1 � (W
′
1)r +

(
(W

′
2)r − τ0W

r
2

)
cos r10τ0 +

(
(W

′
2)i − τ0W

i
2

)
sin r10τ0,

ζ2 � (W
′
1)i +

(
(W

′
2)i − τ0W

i
2

)
cos r10τ0 −

(
(W

′
2)r − τ0W

r
2

)
sin r10τ0.

Now, if we have [H3] : ε1ζ1+ε2ζ2

ζ 2
1 +ζ 2

2
> 0, then the transversality condition Re

[
ds

dτ

]∣
∣
∣
(r1�r10,τ�τ0)

> 0 is true, so we can draw a

conclusion as following.

Theorem 2 If assumptions [H1] and [H3] hold, then

1 If τ ∈ [0, τ0), all the roots of Eq. (7) have negative real parts, and the positive equilibria E∗ of system (6) is locally asymptotically
stable.

2 If τ > τ0, the roots of Eq. (7) have at least one root with positive real part, and the positive equilibria E∗ of system (6) is unstable.
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3 If τ � τ0, the roots of Eq. (7) have a purely imaginary root, and system (6) exhibits a Hopf bifurcation at the positive equilibria,
which imply it has a branch of periodic solution bifurcating from E∗ near τ � τ0.

Remark 1 According to Hopf bifurcation theory [37], if the bifurcation parameter passes through the critical value, making the
eigenvalue pass through the imaginary axis, Hopf bifurcation will occur in the system. At this point, the critical value is called the

bifurcation point. Therefore, if Re

[
ds

dτ

]∣
∣
∣
(r1�r10,τ�τ0)

> 0, system (6) will change from the initial stable state to an unstable state,

and Hopf bifurcation will occur.

3.2 Influence of time delay on bifurcation dynamics of controlled system (2)

In what follows, the influence of the controller Ψ (t) will be investigated. For the given Ψ (t) � μ[I (t)− I (t −υ)], the corresponding
characteristic Eq. of (2) is

P1(s) + P2(s)e−sτ � 0, (14)

where

P1(s) � W1(s) + μ[−sθ1+θ3 + a32s
θ1 + a11s

θ3 − a11a32 + (sθ1+θ3 − a32s
θ1

− a11s
θ3 + a11a32)e−sυ ],

P2(s) � W2(s) + μ[a33s
θ1 − a11a33 + (−a33s

θ1 + a11a33)e−sυ ].

Suppose that s � r2(cos π
2 + i sin π

2 )(r2 > 0) is a purely imaginary root of (14), it follows from (14) that
{
Pr

2 cos r2τ + Pi
2 sin r2τ � −Pr

1 ,

Pi
2 cos r2τ − Pr

2 sin r2τ � −Pi
1 ,

(15)

where

Pr
1 �Wr

1 + μ[−r θ1+θ3
2 cos

θ1 + θ3

2
π + a32r

θ1
2 cos

θ1

2
π + a11r

θ3
2 cos

θ3

2
π − a11a32

+ (r θ1+θ3
2 cos

θ1 + θ3

2
π − a32r

θ1
2 cos

θ1

2
π − a11r

θ3
2 cos

θ3

2
π + a11a32) cos r2υ

+ (r θ1+θ3
2 sin

θ1 + θ3

2
π − a32r

θ1
2 sin

θ1

2
π − a11r

θ3
2 sin

θ3

2
π) sin r2υ],

Pi
1 �Wi

1 − μ[−r θ1+θ3
2 sin

θ1 + θ3

2
π + a32r

θ1
2 sin

θ1

2
π + a11r

θ3
2 sin

θ3

2
π

+ (r θ1+θ3
2 sin

θ1 + θ3

2
π − a32r

θ1
2 sin

θ1

2
π − a11r

θ3
2 sin

θ3

2
π) cos r2υ

+ (r θ1+θ3
2 sin

θ1 + θ3

2
π − a32r

θ1
2 sin

θ1

2
π − a11r

θ3
2 sin

θ3

2
π + a11a32) sin r2υ],

Pr
2 �Wr

2 + μ[a33r
θ1
2 cos

θ1

2
π − a11a33 + (a11a33 − a33r

θ1
2 cos

θ1

2
π) cos r2υ

− a33r
θ1
2 sin

θ1

2
π sin r2υ],

Pi
2 �Wi

2 + μ[a33r
θ1
2 sin

θ1

2
π + (a33r

θ1
2 cos

θ1

2
π − a11a33) cos r2υ

− a33r
θ1
2 sin

θ1

2
π cos r2υ].

Solving Eq.(15) yields
⎧
⎪⎨

⎪⎩

cos r2τ � −α1(r2)

α3(r2)
,

sin r2τ � −α2(r2)

α3(r2)
,

(16)

where α1(r2) � Pr
1 P

r
2 + Pi

1 P
i
2 , α2(r2) � Pr

1 P
i
2 − Pr

2 P
i
1 , α3(r2) � (Pr

2 )2 + (Pi
2)2. It is apparent from Eq.(16) that

α2
1(r2) + α2

2(r2) − α2
3(r2) � 0. (17)

Suppose Eq.(17) has a positive real root r20, we can get τ k � 1

r20

[

arccos(−α1(r20)

α3(r20)
) + 2kπ

]

, k � 0, 1, 2.... Meanwhile, we denote

τ1 � min
{
τ k, k � 0, 1, 2...

}
. For the sake of searching for the criterion of the occurrence for bifurcation, differentiating Eq.(14)

with respect to τ , we have
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P
′
1(s)

ds

dτ
+ P

′
2(s)

ds

dτ
e−sτ + P2(s)e−sτ (−τ

ds

dτ
− s) � 0.

So we can obtain

ds

dτ
� ρ(s)

ς(s)
, (18)

where ρ(s) � sP2(s)e−sτ , ς(s) � P
′
1(s) +

[
P

′
2(s) − τ P2(s)

]
e−sτ . Note ρ1, ρ2 be the real and imaginary parts of ρ(s) individually.

ς1, ς2 be the real and imaginary parts of ς(s) individually. By mathematical manipulation, we conclude from Eq. (18) that

Re

[
ds

dτ

]∣
∣
∣
(r2�r20,τ�τ1)

� ρ1ς1 + ρ2ς2

ς2
1 + ς2

2

, (19)

where

ρ1 � r20

(
Pr

2 sin r20τ1 − Pi
2 cos r20τ1

)
,

ρ2 � r20

(
Pr

2 cos r20τ1 + Pi
2 sin r20τ1

)
,

ς1 � (P
′
1)r +

(
(P

′
2)r − τ1P

r
2

)
cos r20τ1 +

(
(P

′
2)i − τ1P

i
2

)
sin r20τ1,

ς2 � (P
′
1)i +

(
(P

′
2)i − τ1P

i
2

)
cos r20τ1 −

(
(P

′
2)r − τ1P

r
2

)
sin r20τ1.

As a result, if the suppose [H4]: ρ1ς1+ρ2ς2

ς2
1 +ς2

2
> 0 is true, then we can deduce the transversality criteria Re

[
ds

dτ

]∣
∣
∣
(r2�r20,τ�τ1)

> 0, so

we can summarize what we have proved as the following results.

Theorem 3 In the case of [H1] and [H4], we have

1 If τ ∈ [0, τ1), all the roots of Eq. (14) have negative real parts, and the positive equilibria E∗ of system (2) is locally asymptotically
stable.

2 If τ > τ1, the roots of Eq. (14) have at least one root with positive real part, and the positive equilibria E∗ of system (2) is
unstable.

3 If τ � τ1, the roots of Eq. (14) have a purely imaginary root, and system (2) exhibits a Hopf bifurcation at the positive equilibria,
which imply it has a branch of periodic solution bifurcating from E∗ near τ � τ1.

3.3 The Hopf bifurcation of system (2) caused by feedback delay

In the first two subsections, we discussed the stability and bifurcation of the system with regarding gestation period τ as the parameter.
In fact, when the time delay τ is given, feedback control delay υ can also affect the stability of the system and induce Hopf bifurcation
of the system. Hence, we give the following results.

Theorem 4 Suppose conditions [H1] and [H5] satisfy, we have

1 If υ ∈ [0, υ0), the positive equilibria E∗ of system (2) is locally asymptotically stable.
2 If υ > υ0, the positive equilibria E∗ of system (2) is unstable.
3 If υ � υ0, system (2) exhibits a Hopf bifurcation at the positive equilibria, which implies it has a branch of periodic solution

bifurcating from E∗ near υ � υ0.

For the detailed proof of Theorem 4, we can refer to Appendix.

Remark 2 In the previous studies, many scholars ignored the importance of delay parameters in feedback controllers[38, 39]. In fact,
as stated in Theorem 4, the feedback control delay parameter can also affect the stability of the system and induce Hopf bifurcation
phenomenon.
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4 Numerical results

For verify the feasibility of the theoretical analysis on system stability and bifurcation control, we consider the following system by
using the same coefficients as in [8]:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C
0 Dθ1

t S(t) � 2.5S(1 − S
4 ) − 3SI

1+S ,

C
0 Dθ2

t I (t) � 3SI
1+S − I − I P + μ[I (t) − I (t − υ)],

C
0 Dθ3

t P(t) � 1.5I (t − τ )P(t − τ ) − P.

(20)

At the same time, we define initial conditions S(t) � 3, I (t) � 1, P(t) � 1, t ∈ [−max(τ, υ), 0]. By calculation, system (20) has a
unique positive equilibria E∗ � (3.2468, 0.6667, 1.2935).

Case I. First of all, let’s talk about the controller-free system, which is μ � 0 or υ � 0.

(i) Fix θ1 � 0.95, θ2 � 0.96, θ3 � 0.97, note that Theorem 1 is satisfied for the parameters selected when τ � 0, the trajectory
diagram and phase diagram of the uncontrol system solution are shown in Fig. 1. From this figure, we observe that the species
density of susceptible prey, infected prey, and predator changes correspondingly over time from the initial state, but eventually
converges to the equilibria E∗ � (3.2468, 0.6667, 1.2935). Namely, the positive equilibrium E∗ of the controller-free system
is locally asymptotically stable if τ � 0.

(ii) Fix θ1 � 0.95, θ2 � 0.96, θ3 � 0.97. By numerical calculation, we can infer τ0 � 0.2145 and transversality condition [H3] is
satisfied. With the help of Theorem 2, the positive equilibria E∗ is asymptotically stable for τ < τ0, and unstable for τ > τ0.
Furthermore, the uncontrol system has a branch of periodic solution bifurcating from E∗ near τ � τ0. Fig. 2 depicts the
solution curves and phase diagrams of the system at τ � 0.15 and τ � 0.22, respectively.

(iii) In particular, we find that the fractional order also affects the stability of the system. Just for comparison purposes, we simply
change θ3 � 0.97 in Case I(ii) to θ3 � 0.9. After operation, we acquire that τ0 � 0.3308. Therefore, if we fix τ � 0.22, the
positive equilibria E∗ becomes stable from unstable when θ3 changes from 0.97 to 0.9(see Fig. 3).

Remark 3 In order to describe the influence of fractional order on system stability more clearly, the bifurcation critical values τ0

corresponding to parameter θ3 from 0.9 to 1 are fitted in Fig. 4. As some researchers have found, the fractional-order system has a
wider stability region, which inhibits the periodic oscillation behavior of the system[40, 41].

Case II. Next, we begin to discuss fractional control system. For the sake of comparison, we take θ1 � 0.95, θ2 � 0.96, θ3 � 0.97
again.

(i) We select μ � −1, υ � 0.5, then τ1 � 0.4199 can be obtained by numerical calculation, and transversality condition [H4]

Fig. 1 Time series and
phase-portrait of the uncontrolled
system with
θ1 � 0.95, θ2 � 0.96, θ3 � 0.97
and τ � 0

123



Eur. Phys. J. Plus         (2022) 137:934 Page 9 of 14   934 

Fig. 2 Time series and
phase-portraits of the uncontrolled
system with
θ1 � 0.95, θ2 � 0.96, θ3 � 0.97

Fig. 3 Time series and
phase-portraits of the uncontrolled
system with θ1 � 0.95, θ2 � 0.96
and τ � 0.22

is hold. In terms of Theorem 3, the positive equilibria E∗ is asymptotically stable for τ < τ1, and unstable for τ > τ1. In
the meantime, system (20) has a branch of periodic solution bifurcating from E∗ near τ � τ1. Therefore, the equilibria E∗ is
asymptotically stable when τ � 0.22 < τ1. Compared with the control free system, it is obvious that the extended feedback
controller can affect the stability of the system (20), which are simulated in Fig. 5. In particular, if we fix υ � 0.5 beforehand,
the bifurcation critical value τ1 of system (20) can be changed by changing the value of the extended feedback gain parameter
μ within a certain range, which is shown in Fig. 6.

(ii) For test whether Hopf bifurcation can be induced by feedback control delay, let’s choose τ � 0.2 and μ � 0.1. After calculation,
we can get υ0 � 0.5555 and transversality condition [H5] is satisfied. Based on Theorem 4, it implies that the positive equilibria
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Fig. 4 The effect of θ3 on
bifurcation point τ0
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Fig. 5 Time series and
phase-portraits of system (20) with
θ1 � 0.95, θ2 � 0.96, θ3 � 0.97
and τ � 0.22

E∗ is asymptotically stable for υ < υ0, unstable for υ > υ0, and system (20) has a branch of periodic solution bifurcating
from E∗ near υ � υ0. Time series and phase-portraits of system (20) with υ � 0.2, 0.56 are depicted in Fig. 7.

Remark 4 After the detailed comparison above, it is not difficult to find that the desired behavior can be obtained by appropriately
adjusting the extended feedback gain parameters and feedback delay parameters. Therefore, the control system proposed in this
paper could better meet the needs of real life.
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Fig. 6 The effect of μ on
bifurcation point τ1
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Fig. 7 Time series and
phase-portraits of system (20)
with μ � 0.1, τ � 0.2

5 Conclusion

In this research, a delayed fractional ecological epidemiological model with extended feedback controller is presented. First, the
stability and Hopf bifurcation of the system in the controller-free and controller states are discussed with regarding the digestion
delay as a parameter, respectively, and the existence conditions of periodic solution are given. Secondly, this paper confirms that the
Hopf bifurcation can be induced by taking the feedback delay as a bifurcation parameter. Finally, by drawing the solution curve of
the system, the influence of the controller on the stability of the system is verified in detail. That is, the stability of the system could
be maintained by adjusting the negative feedback gain parameters and feedback time delay reasonably, thereby suppressing the
occurrence of periodic solutions. Furthermore, we interestingly find that the periodic oscillatory behavior of the system solution can
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be suppressed by fractional order, which implies that the fractional-order system has a wider stability region than the integer-order
system.
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Appendix

In this section, we give the proof of Theorem 4. If the delay τ is given, the corresponding characteristic Eq. of (2) is

G1(s) + G2(s)e−sυ � 0, (21)

where

G1(s) �W1(s) + W2(s)e−sτ − G2(s),

G2(s) �μ[sθ1+θ2 − a22s
θ1 − a11s

θ2 + a11a22 + (a11a23 − a23s
θ1 − a12a21)e−sτ ].

Suppose that s is a purely imaginary root of (21), where s � r3(cos π
2 + i sin π

2 )(r3 > 0), it procures that
{
Gr

2 cos r3υ + Gi
2 sin r3υ � −Gr

1,

Gi
2 cos r3υ − Gr

2 sin r3υ � −Gi
1,

(22)

where

Gr
1 �Wr

1 + Wr
2 cos r3τ + Wi

2 sin r3τ − Gr
2,

Gi
1 �Wi

1 + Wi
2 cos r3τ − Wr

2 sin r3τ − Gi
2,

Gr
2 �μ[r θ1+θ2

3 cos
θ1 + θ2

2
π − a22r

θ1
3 cos

θ1

2
π − a11r

θ2
3 cos

θ2

2
π + a11a22

− a23r
θ1
3 sin

θ1

2
π sin r3τ + (a11a23 − a23r

θ1
3 cos

θ1

2
π − a12a21) cos r3τ ],

Gi
2 �μ[r θ1+θ2

3 sin
θ1 + θ2

2
π − a22r

θ1
3 sin

θ1

2
π − a11r

θ2
3 sin

θ2

2
π − a23r

θ1
3 sin

θ1

2
π cos r3τ

+ (a23r
θ1
3 cos

θ1

2
π + a12a21 − a11a23) sin r3τ ].

Taking account of Eq.(22), we can get
⎧
⎪⎨

⎪⎩

cos r3υ � −γ1(r3)

γ3(r3)
,

sin r3υ � −γ2(r3)

γ3(r3)
,

(23)

where γ1(r3) � Gr
1G

r
2 + Gi

1G
i
2, γ2(r3) � Gr

1G
i
2 − Gr

2G
i
1, γ3(r3) � (Gr

2)2 + (Gi
2)2. Draw support from Eq.(23), we have

γ 2
1 (r3) + γ 2

2 (r3) − γ 2
3 (r3) � 0. (24)

Let’s assume that Eq.(24) has a positive real root r30, we obtain υk � 1

r30

[

arccos(−γ1(r30)

γ3(r30)
) + 2kπ

]

, k � 0, 1, 2.... Now, we make

υ0 � min
{
υk, k � 0, 1, 2...

}
. Similarly, in order to better study the Hopf bifurcation, differentiating Eq.(21) with respect to υ, one

can infer that

G
′
1(s)

ds

dυ
+ G

′
2(s)

ds

dυ
e−sυ + G2(s)e−sυ (−υ

ds

dυ
− s) � 0.

Accordingly, we have

ds

dυ
� ι(s)

�(s)
, (25)
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where ι(s) � sG2(s)e−sυ , �(s) � G
′
1(s) +

[
G

′
2(s) − υG2(s)

]
e−sυ . Put ι1, ι2 be the real and imaginary parts of ι(s) individually. �1,

�2 be the real and imaginary parts of �(s) individually. After several algebraic calculations, we can further obtain from Eq.(25) that

Re

[
ds

dυ

]∣
∣
∣
(r3�r30,υ�υ0)

� ι1�1 + ι2�2

�2
1 + �2

2

, (26)

where

ι1 �r30

(
Gr

2 sin r30υ0 − Gi
2 cos r30υ0

)
,

ι2 �r30

(
Gr

2 cos r30υ0 + Gi
2 sin r30υ0

)
,

�1 �(G
′
1)r +

(
(G

′
2)r − υ0G

r
2

)
cos r30υ0 +

(
(G

′
2)i − υ0G

i
2

)
sin r30υ0,

�2 �(G
′
1)i +

(
(G

′
2)i − υ0G

i
2

)
cos r30υ0 −

(
(G

′
2)r − υ0G

r
2

)
sin r30υ0.

In consequence, if the suppose [H5]:
ι1�1 + ι2�2

�2
1 + �2

2

> 0 is true, then the transversality criteria Re

[
ds

dυ

]∣
∣
∣
(r3�r30,υ�υ0)

> 0 can be

concluded, so Theorem 4 can be obtained.
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