Skip to main content
Log in

Phonon trapping states as a witness for generation of phonon blockade in a hybrid micromaser system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In a hybrid micromaser system consisting of an optical cavity with a moving mirror connected to a low-temperature thermal bath, we demonstrate, both analytically and numerically, that for certain interaction times between a random atomic flux and the optomechanical cavity, vacuum phonon trapping states are generated. Furthermore, under the approach of the master equation with independent phonon and photon thermal baths, we show that the trapping of the phonons and photons is achieved for the same interaction times. The results also indicate that by increasing the cavity-oscillator coupling, one may generate a coherent phonon state aside from the trapping states. Within the same hybrid system, but now connected to the squeezed phonon reservoir, a phonon blockade effect can be engineered. Moreover, we identify an interconnection between the trapping and blockade effects, particularly if one approaches the vacuum trapping state, strong phonon blockade can be achieved when the system is connected with a weakly squeezed phonon reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility Statement

No data associated in the manuscript.

References

  1. S. Haroche, J.M. Raimond, Exploring the Quantum (Oxford Graduate Texts. Oxford Univerdity Press, Oxford, 2006)

    Book  Google Scholar 

  2. E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51(1), 89–109 (1963). https://doi.org/10.1109/PROC.1963.1664

    Article  Google Scholar 

  3. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  4. M. Orszag, Quantum Optics, 3rd edn. (Springer, Berlin, 2016)

    Book  Google Scholar 

  5. R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99–110 (1954). https://doi.org/10.1103/PhysRev.93.99

    Article  ADS  MATH  Google Scholar 

  6. M. Gross, S. Haroche, Superradiance: an essay on the theory of collective spontaneous emission. Phys. Rep. 93(5), 301–396 (1982). https://doi.org/10.1016/0370-1573(82)90102-8

    Article  ADS  Google Scholar 

  7. D.F. Walls, Nature 306, 5939 (1983). https://doi.org/10.1038/306141a0

    Article  Google Scholar 

  8. P. Filipowicz, J. Javanainen, P. Meystre, Theory of a microscopic maser. Phys. Rev. A 34, 3077–3087 (1986). https://doi.org/10.1103/PhysRevA.34.3077

    Article  ADS  Google Scholar 

  9. M. Weidinger, B.T.H. Varcoe, R. Heerlein, H. Walther, Trapping states in the micromaser. Phys. Rev. Lett. 82, 3795–3798 (1999). https://doi.org/10.1103/PhysRevLett.82.3795

    Article  ADS  Google Scholar 

  10. S. Brattke, B.T.H. Varcoe, H. Walther, Generation of photon number states on demand via cavity quantum electrodynamics. Phys. Rev. Lett. 86, 3534–3537 (2001). https://doi.org/10.1103/PhysRevLett.86.3534

    Article  ADS  Google Scholar 

  11. P. Meystre, M. Sargent, Elements of Quantum Optics, 4th edn. (Springer, Berlin, 2007)

    Book  Google Scholar 

  12. N.A. Enaki, N. Ciobanu, Quantum trapping conditions for three-level atom flying through bimodal cavity field. J. Mod. Opt. 55(10), 1557–1569 (2008). https://doi.org/10.1080/09500340701721868

    Article  ADS  MATH  Google Scholar 

  13. L. Davidovich, J.M. Raimond, M. Brune, S. Haroche, Quantum theory of a two-photon micromaser. Phys. Rev. A 36, 3771–3787 (1987). https://doi.org/10.1103/PhysRevA.36.3771

    Article  ADS  Google Scholar 

  14. J. Bergou, L. Davidovich, M. Orszag, C. Benkert, M. Hillery, M.O. Scully, Role of pumping statistics in maser and laser dynamics: Density-matrix approach. Phys. Rev. A 40, 5073–5080 (1989). https://doi.org/10.1103/PhysRevA.40.5073

    Article  ADS  Google Scholar 

  15. D. Meschede, H. Walther, G. Müller, One-atom maser. Phys. Rev. Lett. 54, 551–554 (1985). https://doi.org/10.1103/PhysRevLett.54.551

    Article  ADS  Google Scholar 

  16. M. Brune, J.M. Raimond, P. Goy, L. Davidovich, S. Haroche, Realization of a two-photon maser oscillator. Phys. Rev. Lett. 59, 1899–1902 (1987). https://doi.org/10.1103/PhysRevLett.59.1899

    Article  ADS  Google Scholar 

  17. H. Walther, Experiments on cavity quantum electrodynamics. Phys. Rep. 219(3), 263–281 (1992). https://doi.org/10.1016/0370-1573(92)90142-M

    Article  ADS  Google Scholar 

  18. C.B. Dağ, W. Niedenzu, O.E. Müstecaplıoğlu, G. Kurizki, Multiatom quantum coherences in micromasers as fuel for thermal and nonthermal machines. Entropy 18 (2016). https://doi.org/10.3390/e18070244

  19. P.D. Nation, Nonclassical mechanical states in an optomechanical micromaser analog. Phys. Rev. A 88, 053828 (2013). https://doi.org/10.1103/PhysRevA.88.053828

    Article  ADS  Google Scholar 

  20. S. Dambach, A.D. Armour, B. Kubala, J. Ankerhold, Josephson junction cavity systems as cousins of the quantum optical micromaser. Phys. Scripta 94(10), 104001 (2019). https://doi.org/10.1088/1402-4896/ab2a90

    Article  ADS  Google Scholar 

  21. A. Kouzelis, K. Macieszczak, J. Minář, I. Lesanovsky, Dissipative quantum state preparation and metastability in two-photon micromasers. Phys. Rev. A 101, 043847 (2020). https://doi.org/10.1103/PhysRevA.101.043847

    Article  ADS  Google Scholar 

  22. C. Davis-Tilley, A.D. Armour, Synchronization of micromasers. Phys. Rev. A 94, 063819 (2016). https://doi.org/10.1103/PhysRevA.94.063819

    Article  ADS  Google Scholar 

  23. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014). https://doi.org/10.1103/RevModPhys.86.1391

    Article  ADS  Google Scholar 

  24. C. Sánchez Muñoz, A. Lara, J. Puebla, F. Nori, Hybrid systems for the generation of nonclassical mechanical states via quadratic interactions. Phys. Rev. Lett. 121, 123604 (2018). https://doi.org/10.1103/PhysRevLett.121.123604

    Article  ADS  Google Scholar 

  25. M. Mirhosseini, A. Sipahigil, M. Kalaee, O. Painter, Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020). https://doi.org/10.1038/s41586-020-3038-6

    Article  ADS  Google Scholar 

  26. Y. Nakamura, Y.A. Pashkin, J.S. Tsai, Coherent control of macroscopic quantum states in a single-cooper-pair box. Nature 398, 786–788 (1999). https://doi.org/10.1038/19718

    Article  ADS  Google Scholar 

  27. J.-Q. Liao, L. Tian, Macroscopic quantum superposition in cavity optomechanics. Phys. Rev. Lett. 116, 163602 (2016). https://doi.org/10.1103/PhysRevLett.116.163602

    Article  ADS  Google Scholar 

  28. V. Montenegro, R. Coto, V. Eremeev, M. Orszag, Macroscopic nonclassical-state preparation via postselection. Phys. Rev. A 96, 053851 (2017). https://doi.org/10.1103/PhysRevA.96.053851

    Article  ADS  Google Scholar 

  29. R.Y. Teh, S. Kiesewetter, P.D. Drummond, M.D. Reid, Creation, storage, and retrieval of an optomechanical cat state. Phys. Rev. A 98, 063814 (2018). https://doi.org/10.1103/PhysRevA.98.063814

    Article  ADS  Google Scholar 

  30. M. Scala, M.S. Kim, G.W. Morley, P.F. Barker, S. Bose, Matter-wave interferometry of a levitated thermal nano-oscillator induced and probed by a spin. Phys. Rev. Lett. 111, 180403 (2013). https://doi.org/10.1103/PhysRevLett.111.180403

    Article  ADS  Google Scholar 

  31. I. Marinkovi ć, A. Wallucks, R. Riedinger, S. Hong, M. Aspelmeyer, S. Gröblacher Optomechanical bell test. Phys. Rev. Lett. 121, 220404 (2018). https://doi.org/10.1103/PhysRevLett.121.220404

  32. Y.-X. Liu, A. Miranowicz, Y.B. Gao, J. Bajer, C.P. Sun, F. Nori, Qubit-induced phonon blockade as a signature of quantum behavior in nanomechanical resonators. Phys. Rev. A 82, 032101 (2010). https://doi.org/10.1103/PhysRevA.82.032101

    Article  ADS  Google Scholar 

  33. N. Didier, S. Pugnetti, Y.M. Blanter, R. Fazio, Detecting phonon blockade with photons. Phys. Rev. B 84, 054503 (2011). https://doi.org/10.1103/PhysRevB.84.054503

    Article  ADS  Google Scholar 

  34. X. Wang, A. Miranowicz, H.-R. Li, F. Nori, Method for observing robust and tunable phonon blockade in a nanomechanical resonator coupled to a charge qubit. Phys. Rev. A 93, 063861 (2016). https://doi.org/10.1103/PhysRevA.93.063861

    Article  ADS  Google Scholar 

  35. J. Restrepo, I. Favero, C. Ciuti, Fully coupled hybrid cavity optomechanics: Quantum interferences and correlations. Phys. Rev. A 95, 023832 (2017). https://doi.org/10.1103/PhysRevA.95.023832

    Article  ADS  Google Scholar 

  36. X.-W. Xu, H.-Q. Shi, J.-Q. Liao, A.-X. Chen, Generation of single entangled photon-phonon pairs via an atom-photon-phonon interaction. Phys. Rev. A 100, 053802 (2019). https://doi.org/10.1103/PhysRevA.100.053802

    Article  ADS  Google Scholar 

  37. S. Debnath, N.M. Linke, S.-T. Wang, C. Figgatt, K.A. Landsman, L.-M. Duan, C. Monroe, Observation of hopping and blockade of bosons in a trapped ion spin chain. Phys. Rev. Lett. 120, 073001 (2018). https://doi.org/10.1103/PhysRevLett.120.073001

    Article  ADS  Google Scholar 

  38. H.Q. Shi, X.W. Xu, N.H. Liu, Phonon blockade in a nanomechanical resonator quadratically coupled to a two-level. Sci. Rep. 9 (2019). https://doi.org/10.1038/s41598-019-45027-z

  39. L.-L. Zheng, T.-S. Yin, Q. Bin, X.-Y. Lü, Y. Wu, Single-photon-induced phonon blockade in a hybrid spin-optomechanical system. Phys. Rev. A 99, 013804 (2019). https://doi.org/10.1103/PhysRevA.99.013804

    Article  ADS  Google Scholar 

  40. J.-Y. Yang, Z. Jin, J.-S. Liu, H.-F. Wang, A.-D. Zhu, Unconventional phonon blockade in a tavis–cummings coupled optomechanical system. Annalen der Physik 532(12), 2000299 (2020). https://doi.org/10.1002/andp.202000299

    Article  ADS  MathSciNet  Google Scholar 

  41. H. Lin, H. Yang, X. Wang, Y. Zhou, Z. Yao, Realization of the unconventional photon blockade based on a three-wave mixing system. Opt. Exp. 29(6), 8235–8243 (2021). https://doi.org/10.1364/OE.416285

    Article  Google Scholar 

  42. Y.-X. Zeng, T. Gebremariam, J. Shen, B. Xiong, C. Li, Application of machine learning for predicting strong phonon blockade. Appl. Phys. Lett. 118(16), 164003 (2021). https://doi.org/10.1063/5.0035498

    Article  ADS  Google Scholar 

  43. A. Imamoḡ lu, H. Schmidt, G. Woods, M. Deutsch, Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997). https://doi.org/10.1103/PhysRevLett.79.1467

  44. X. Wang, W. Qin, A. Miranowicz, S. Savasta, F. Nori, Unconventional cavity optomechanics: Nonlinear control of phonons in the acoustic quantum vacuum. Phys. Rev. A 100, 063827 (2019). https://doi.org/10.1103/PhysRevA.100.063827

    Article  ADS  Google Scholar 

  45. K.M. Birnbaum, A. Boca, R. Miller, A.D. Boozer, T.E. Northup, H.J. Kimble, Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005). https://doi.org/10.1038/nature03804

    Article  ADS  Google Scholar 

  46. C. Hamsen, K.N. Tolazzi, T. Wilk, G. Rempe, Two-photon blockade in an atom-driven cavity qed system. Phys. Rev. Lett. 118, 133604 (2017). https://doi.org/10.1103/PhysRevLett.118.133604

    Article  ADS  Google Scholar 

  47. H.J. Snijders, J.A. Frey, J. Norman, H. Flayac, V. Savona, A.C. Gossard, J.E. Bowers, M.P. van Exter, D. Bouwmeester, W. Löffler, Observation of the unconventional photon blockade. Phys. Rev. Lett. 121, 043601 (2018). https://doi.org/10.1103/PhysRevLett.121.043601

    Article  ADS  Google Scholar 

  48. C. Vaneph, A. Morvan, G. Aiello, M. Féchant, M. Aprili, J. Gabelli, J. Estève, Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett. 121, 043602 (2018). https://doi.org/10.1103/PhysRevLett.121.043602

    Article  ADS  Google Scholar 

  49. A. Majumdar, M. Bajcsy, A. Rundquist, J. Vučkovi ć Loss-enabled sub-poissonian light generation in a bimodal nanocavity. Phys. Rev. Lett. 108, 183601 (2012). https://doi.org/10.1103/PhysRevLett.108.183601

  50. P. Rabl, Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011). https://doi.org/10.1103/PhysRevLett.107.063601

    Article  ADS  Google Scholar 

  51. A. Miranowicz, J. Bajer, N. Lambert, Y.-X. Liu, F. Nori, Tunable multiphonon blockade in coupled nanomechanical resonators. Phys. Rev. A 93, 013808 (2016). https://doi.org/10.1103/PhysRevA.93.013808

    Article  ADS  Google Scholar 

  52. S.S. Shamailov, A.S. Parkins, M.J. Collett, H.J. Carmichael, Multi-photon blockade and dressing of the dressed states. Opt. Commun. 283(5), 766–772 (2010). https://doi.org/10.1016/j.optcom.2009.10.062. Quo vadis Quantum Optics?

  53. A. Miranowicz, M. Paprzycka, Y.-X. Liu, J. Bajer, F. Nori, Two-photon and three-photon blockades in driven nonlinear systems. Phys. Rev. A 87, 023809 (2013). https://doi.org/10.1103/PhysRevA.87.023809

    Article  ADS  Google Scholar 

  54. R. Huang, A. Miranowicz, J.-Q. Liao, F. Nori, H. Jing, Nonreciprocal photon blockade. Phys. Rev. Lett. 121, 153601 (2018). https://doi.org/10.1103/PhysRevLett.121.153601

    Article  ADS  Google Scholar 

  55. B. Li, R. Huang, X. Xu, A. Miranowicz, H. Jing, Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res. 7(6), 630–641 (2019). https://doi.org/10.1364/PRJ.7.000630

    Article  Google Scholar 

  56. P. Yang, M. Li, X. Han, H. He, G. Li, C.-L. Zou, P. Zhang, T. Zhang, Non-reciprocal cavity polariton. arXiv (2019). https://doi.org/10.48550/ARXIV.1911.10300. https://arxiv.org/abs/1911.10300

  57. T.C.H. Liew, V. Savona, Single photons from coupled quantum modes. Phys. Rev. Lett. 104, 183601 (2010). https://doi.org/10.1103/PhysRevLett.104.183601

    Article  ADS  Google Scholar 

  58. A. Miranowicz, J. Bajer, M. Paprzycka, Y.-X. Liu, A.M. Zagoskin, F. Nori, State-dependent photon blockade via quantum-reservoir engineering. Phys. Rev. A 90, 033831 (2014). https://doi.org/10.1103/PhysRevA.90.033831

    Article  ADS  Google Scholar 

  59. A. Kowalewska-Kudłaszyk, S.I. Abo, G. Chimczak, J. Pe řina, F. Nori, A. Miranowicz, Two-photon blockade and photon-induced tunneling generated by squeezing. Phys. Rev. A 100, 053857 (2019). https://doi.org/10.1103/PhysRevA.100.053857

  60. K.W. Murch, K.L. Moore, S. Gupta, D.M. Stamper-Kurn, Observation of quantum-measurement backaction with an ultracold atomic gas. Nature 4 (2008). https://doi.org/10.1038/nphys965

  61. J. Chan, T.P.M. Alegre, A.H. Safavi-Naeini, J.T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478 (2011). https://doi.org/10.1038/nature10461

  62. A. Xuereb, C. Genes, A. Dantan, Strong coupling and long-range collective interactions in optomechanical arrays. Phys. Rev. Lett. 109, 223601 (2012). https://doi.org/10.1103/PhysRevLett.109.223601

    Article  ADS  Google Scholar 

  63. H. Molinares, V. Eremeev, M. Orszag, High-fidelity synchronization and transfer of quantum states in optomechanical hybrid systems. Phys. Rev. A 105, 033708 (2022). https://doi.org/10.1103/PhysRevA.105.033708

    Article  ADS  MathSciNet  Google Scholar 

  64. H.J. Carmichael, Statistical Methods in Quantum Optics 1, 1st edn. (Springer, Berlin, 1999)

    Book  Google Scholar 

  65. N. Petrov, V. Pustovoit, Small-sized interferometer with fabry-perot resonators for gravitational wave detection. Sensors 21(5) (2021). https://doi.org/10.3390/s21051877

  66. M. Orszag, R. Ramírez, J.C. Retamal, C. Saavedra, Quantum cooperative effects in a micromaser. Phys. Rev. A 49, 2933–2937 (1994). https://doi.org/10.1103/PhysRevA.49.2933

    Article  ADS  Google Scholar 

Download references

Acknowledgements

H.M. acknowledge financial support from Universidad Mayor through the Doctoral fellowship. M.O. acknowledge the financial support from ANID Fondecyt Regular No. 1180175. V.E. acknowledge the financial support from ANID Fondecyt Regular No. 1221250 and grant No. 20.80009.5007.01 of the State Program (2020–2023) from National Agency for Research and Development of Moldova.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hugo Molinares or Miguel Orszag.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Appendices

Appendix A: Hamiltonian in the interaction picture

This appendix provides the derivation of the initial Hamiltonian Eq. 1 in the interaction picture. Let us introduce the operator counting the number of atom-cavity polaritonic excitations:

$$\begin{aligned} \hat{\mathcal {N}}={\hat{a}}^{\dag }{\hat{a}}+{\hat{\sigma }}_{z}/2 \end{aligned}$$
(A1)

We observe that this polariton number operator commutes with the Hamiltonian of the system, \([\hat{\mathcal {H}},\hat{\mathcal {N}}]=0\). Therefore, the Hamiltonian of the closed system is block-diagonal in the basis of eigenvectors of the polariton number operator. By considering the detuning \(\delta =\omega _{a}-\omega _{c}\), the Hamiltonian in Eq. 1 can be written as

$$\begin{aligned} \hat{\mathcal {H}}=\hat{\mathcal {H}}_{0}+\hat{\mathcal {H}}_{I}, \end{aligned}$$
(A2)

where

$$\begin{aligned} \hat{\mathcal {H}}_{0}&=\omega _{m}{\hat{b}}^{\dag }{\hat{b}},\nonumber \\ \hat{\mathcal {H}}_{I}&=\delta \frac{{\hat{\sigma }}_{z}}{2}+ g_{ac}\left( {\hat{a}}{\hat{\sigma }}_{+}+{\hat{a}}^{\dag }{\hat{\sigma }}_{-}\right) -g_{cm}{\hat{a}}^{\dag }{\hat{a}}\left( {\hat{b}}^{\dag }+{\hat{b}}\right) . \end{aligned}$$
(A3)

Now, we calculate the Hamiltonian in the first interaction picture, that is

$$\begin{aligned} \hat{\mathcal {H}}'=e^{i \hat{\mathcal {H}}_{0} t}\hat{\mathcal {H}}_{I}e^{-i \hat{\mathcal {H}}_{0} t}. \end{aligned}$$
(A4)

Using the fact that

$$\begin{aligned} \mathcal {{\hat{U}}}f\left( \left\{ \mathcal {{\hat{X}}}_{i}\right\} \right) \mathcal {{\hat{U}}}^{\dag } =f\left( \left\{ \mathcal {{\hat{U}}}\mathcal {{\hat{X}}}_{i}{\hat{U}}^{\dag }\right\} \right) , \end{aligned}$$
(A5)

for any function f, unitary operator \(\mathcal {{\hat{U}}}\) and arbitrary set of operators \(\left\{ \mathcal {{\hat{X}}}_{i}\right\}\), so Eq. A4 takes the form

$$\begin{aligned} \hat{\mathcal {H}}'=\hat{\mathcal {H}}'_{0}+\hat{\mathcal {H}}'_{I}, \end{aligned}$$
(A6)

where

$$\begin{aligned} \hat{\mathcal {H}}'_{0}&=\delta \frac{{\hat{\sigma }}_{z}}{2}+ g_{ac}\left( {\hat{a}}{\hat{\sigma }}_{+}+{\hat{a}}^{\dag }{\hat{\sigma }}_{-}\right) ,\nonumber \\ \hat{\mathcal {H}}'_{I}&=-g_{cm}{\hat{a}}^{\dag }{\hat{a}}\left( {\hat{b}}^{\dag }e^{i\omega _{m}t}+{\hat{b}}e^{-i\omega _{m}t}\right) . \end{aligned}$$
(A7)

Now, we move to a second interaction picture, defined as

$$\begin{aligned} \hat{\tilde{\mathcal {H}}}=\exp {\left[ i\int \hat{\mathcal {H}}'_{0}dt\right] }\hat{\mathcal {H}}'_{I}\exp {\left[ -i\int \hat{\mathcal {H}}'_{0}dt\right] }. \end{aligned}$$
(A8)

The result of the transformation is easily calculated to be finally Eq. 2

Appendix B: Phonon gain superoperator

This section presents the derivation of the gain part of the maser ME for the MO operator. We consider an initial atom-cavity-oscillator operator as

$$\begin{aligned} {\hat{\rho }}(0)=\begin{pmatrix} 0 \quad &\quad 0\\ 0 \quad&\quad 1 \end{pmatrix}\otimes {\hat{\rho }}_{c}(0)\otimes {\hat{\rho }}_{m}(0), \end{aligned}$$
(B9)

where the atom was taken in the ground state. After the interaction time \(\tau\), the total density operator evolves according to Eq. 3. After a straightforward calculation, one gets

$$\begin{aligned} {\hat{\rho }}(\tau )= \begin{pmatrix} g_{ac}^{2}\mathcal {\mathcal {{\hat{S}}}}{\hat{a}}e^{i\mathcal {{\hat{F}}}}{\hat{\rho }}_{c}(0)\otimes {\hat{\rho }}_{m}(0)e^{-i\mathcal {{\hat{F}}}}{\hat{a}}^{\dag }\mathcal {\mathcal {{\hat{S}}}} &{} -i g_{ac}\mathcal {\mathcal {{\hat{S}}}}{\hat{a}}e^{i\mathcal {{\hat{F}}}}{\hat{\rho }}_{c}(0)\otimes {\hat{\rho }}_{m}(0)\mathcal {{\hat{D}}}^{\dag }\\ ig_{ac}\mathcal {{\hat{D}}}{\hat{\rho }}_{c}(0)\otimes {\hat{\rho }}_{m}(0)e^{-i\mathcal {{\hat{F}}}}{\hat{a}}^{\dag }\mathcal {\mathcal {{\hat{S}}}} &{} \mathcal {{\hat{D}}}{\hat{\rho }}_{c}(0)\otimes {\hat{\rho }}_{m}(0)\mathcal {{\hat{D}}}^{\dag } \end{pmatrix}, \end{aligned}$$
(B10)

where \(\mathcal {{\hat{D}}}^{\dag }\) is hermitian conjugate of \(\mathcal {{\hat{D}}}\), see Eq. 5.

Next, tracing over the atom, the cavity-MO reduced operator reads

$$\begin{aligned} {\hat{\rho }}_{c,m}(\tau ) = {\hat{\rho }}_{m}(0)\mathcal {{\hat{D}}}{\hat{\rho }}_{c}(0)\mathcal {{\hat{D}}}^{\dag }+ g^{2}_{ac}e^{i\mathcal {{\hat{F}}}}{\hat{\rho }}_{m}(0)e^{-i\mathcal {{\hat{F}}}}\mathcal {\mathcal {{\hat{S}}}}{\hat{a}}{\hat{\rho }}_{c}(0){\hat{a}}^{\dag }\mathcal {\mathcal {{\hat{S}}}}. \end{aligned}$$
(B11)

In the following, we consider the cavity field initialized in a coherent state (Eq. 8). Hence, the above equation becomes

$$\begin{aligned} {\hat{\rho }}_{c,m}(\tau )= & {} {\hat{\rho }}_{m}(0)e^{-\vert \alpha \vert ^{2}}\sum _{n,m}\frac{\alpha ^{n}\alpha ^{*m}}{\sqrt{n!m!}}D_{n}D_{m}^{*}\vert n\rangle \langle m\vert \nonumber \\+ & {} g^{2}_{ac}e^{i\mathcal {{\hat{F}}}}{\hat{\rho }}_{m}(0)e^{-i\mathcal {{\hat{F}}}}e^{-\vert \alpha \vert ^{2}}\sum _{n,m}\frac{\alpha ^{n}\alpha ^{*m}}{\sqrt{n!m!}}\sqrt{nm}\nonumber \\\times & {} S_{n-1}S_{m-1}\vert n-1\rangle \langle m-1\vert , \end{aligned}$$
(B12)

where

$$\begin{aligned} D_{n}&=\cos {\left( \sqrt{\varphi _{n}}\tau \right) }+\frac{i\delta }{2}\frac{\sin {\left( \tau \sqrt{\varphi _{n}}\right) }}{\sqrt{\varphi _{n}}},\end{aligned}$$
(B13)
$$\begin{aligned} S_{n-1}&=\frac{\sin {\left( \tau \sqrt{\varphi _{n-1}+g_{ac}^{2}}\right) }}{\sqrt{\varphi _{n-1}+g_{ac}^{2}}}. \end{aligned}$$
(B14)

Finally tracing over the cavity, we find Eqs. 10, 11 and 12.

Appendix C: Solution of the Fokker-Planck equation

Here, we present the steps to get the solution 16 of the Fokker-Planck equation 15. Let us consider the MO initially is in a coherent state, i.e., in the Gaussian representation takes the form

$$\begin{aligned} P(\beta ,\beta ^{*},0)=(\pi \epsilon )^{-1}\exp {\left[ -\vert \beta -\beta _{0}\vert ^{2}/\epsilon \right] } \end{aligned}$$
(C15)

By considering a solution type \(P(\beta ,\beta ^{*},t)=\exp {\left[ a(t)+b(t)\beta +c(t)\beta ^{*}+d(t)\beta \beta ^{*}\right] }\), one obtains a set of first-order differential equations

$$\begin{aligned} {\dot{a}}(t)&=\kappa _{b}\left( d(t)+{\bar{n}}_{th}d^{2}(t)\right) ,\end{aligned}$$
(C16)
$$\begin{aligned} {\dot{b}}(t)&=\kappa _{b}\left( \frac{1}{2}c(t)+{\bar{n}}_{th}c(t)d(t)\right) -\lambda B(\tau )rd(t),\end{aligned}$$
(C17)
$$\begin{aligned} {\dot{c}}(t)&=\kappa _{b}\left( \frac{1}{2}b(t)+{\bar{n}}_{th}b(t)d(t)\right) -\lambda B(\tau )rd(t),\end{aligned}$$
(C18)
$$\begin{aligned} {\dot{d}}(t)&=\kappa _{b}\left( 1+{\bar{n}}_{th}[c(t)b(t)+d(t)]\right) -\lambda B(\tau )r[c(t)+b(t)]. \end{aligned}$$
(C19)

For an initial thermal distribution, \(\epsilon ={\bar{n}}_{th}\), \(\beta _{0}=0\) and after a straightforward calculation, we get

$$\begin{aligned} P(\beta ,\beta ^{*},t) = \frac{1}{\pi {\bar{n}}_{th}}\text {exp}\left[ \text {ln}[\pi {\bar{n}}_{th}]-\frac{\beta _{1}^{2}}{{\bar{n}}_{th}}-\frac{\vert \beta \vert ^{2}}{{\bar{n}}_{th}}+\frac{\beta _{1}\beta }{{\bar{n}}_{th}}+\frac{\beta _{1}\beta ^{*}}{{\bar{n}}_{th}}\right] , \end{aligned}$$
(C20)

with \(\beta _{1}=2\lambda r B(\tau )\kappa _{b}^{-1}(1-\exp {\left[ -\kappa _{b}t/2\right] })\). Finally, the last equation can be written compactly as Eq. 16.

Appendix D: Phonon trapping condition

The critical values of the pump parameter, \(\Theta\), where the phonon trapping vacuum states occur, are calculated from the condition of the minimum value for the steady-state average phonon number: \(\frac{\partial }{\partial \Theta }\langle {\hat{b}}^{\dag }{\hat{b}}\rangle =0\) with \(\frac{\partial ^{2}}{\partial \Theta ^{2}}\langle {\hat{b}}^{\dag }{\hat{b}}\rangle >0\). So the derivative of Eq. 18 gives

$$\begin{aligned} \frac{\partial }{\partial \Theta }\langle {\hat{b}}^{\dag }{\hat{b}}\rangle= & {} \frac{8e^{-2\vert \alpha \vert ^{2}}g_{ac}\lambda ^{2}r^{3/2}}{\kappa _{b}^{2}\omega _{m}^{1/2}} \sum _{n}\frac{\vert \alpha \vert ^{2(n+1)}\sqrt{n+1}}{(n+1)!}\sin {\left( 2g_{ac}\Theta \sqrt{\frac{n+1}{\omega _{m}r}}\right) }\nonumber \\\times & {} \sum _{n}\frac{\vert \alpha \vert ^{2(n+1)}}{(n+1)!}\sin {\left( g_{ac}\Theta \sqrt{\frac{n+1}{\omega _{m}r}}\right) }^{2}. \end{aligned}$$
(D21)

Taking into account that \(\left\{ \alpha ,g_{ac},r,\lambda ,\kappa _{b}\right\} >0\), the phonon trapping state is valid for

$$\begin{aligned} \sum _{n}\frac{\vert \alpha \vert ^{2(n+1)}\sqrt{n+1}}{(n+1)!}\sin {\left( 2g_{ac}\Theta \sqrt{\frac{n+1}{\omega _{m}r}}\right) }=0. \end{aligned}$$
(D22)

Finally, the above equation can be solved numerically, and the minimal values for \(\langle {\hat{b}}^{\dag }{\hat{b}}\rangle\) are found, see vertical lines in Fig. 2b.

Appendix E: Calculation of \(g_{b}^{(2)}(0)\)

To calculate the second-order correlation function for phonons, \(g_{b}^{(2)}(0)=\langle {\hat{b}}^{\dag }{\hat{b}}^{\dag }{\hat{b}}{\hat{b}}\rangle /\langle {\hat{b}}^{\dag }b\rangle ^{2}\), we consider convenient to use the moment-generating function

$$\begin{aligned} \mathcal {Q}(s)=\sum _{n=0}^{\infty }(1-s)^{n}P(n), \end{aligned}$$
(E23)

where \(P(n)=\int d^{2}\beta P(\beta ,\beta ^{*},t)\vert \langle n\vert \beta \rangle \vert ^{2}\) is the probability to have n phonons in the MO and \(P(\beta ,\beta ^{*},t)\) is defined in Eq. 16. After a straightforward calculation, one obtains

$$\begin{aligned} P(n)= \frac{1}{\pi {\bar{n}}_{th}n!} \int d^{2}\beta \vert \beta \vert ^{2n} e^{-\vert \beta \vert ^{2}-\frac{\vert \beta -\beta _{1}\vert ^{2}}{{\bar{n}}_{th}}}. \end{aligned}$$
(E24)

Finally, using the definition \(g^{(2)}(0)=\frac{1}{\langle n\rangle }\frac{d^{2}\mathcal {Q}}{ds^{2}}\vert _{s=0}\), see [3], we get Eq. 23.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molinares, H., Eremeev, V. & Orszag, M. Phonon trapping states as a witness for generation of phonon blockade in a hybrid micromaser system. Eur. Phys. J. Plus 137, 981 (2022). https://doi.org/10.1140/epjp/s13360-022-03148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03148-x

Navigation